
Technical Report

CMU/SEI-90-TR-24
ESD-90-TR-225

Software Engineering
Process Group Guide

Priscilla Fowler
Stan Rifkin

September 1990

Software Engineering
Process Group Guide

AB

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

Technical Report
CMU/SEI-90-TR-24

ESD-90-TR-225
September 1990

Priscilla Fowler
Technology Applications Project

Stan Rifkin
Software Process Development Project

with an appendix by
David M. Card

Computer Sciences Corporation

Unlimited distribution subject to the copyright.

This report was prepared for the SEI Joint Program Office HQ ESC/AXS

5 Eglin Street

Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is
published in the interest of scientific and technical information exchange.

FOR THE COMMANDER

(signature on file)

Thomas R. Miller, Lt Col, USAF, SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright 1990 by Carnegie Mellon University.

Permission to reproduce this document and to prepare derivative works from this document for internal use is granted, provided the copyright and

\‘No Warranty\’ statements are included with all reproductions and derivative works. Requests for permission to reproduce this document or to

prepare derivative works of this document for external and commercial use should be addressed to the SEI Licensing Agent.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN \‘AS-IS\’ BASIS.

CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER

INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTIBILITY, EXCLUSIVITY, OR RESULTS

OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH

RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This work was created in the performance of Federal Government Contract Number F19628-95-C-0003 with Carnegie Mellon University for the

operation of the Software Engineering Institute, a federally funded research and development center. The Government of the United States has a

royalty-free government-purpose license to use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit

others to do so, for government purposes pursuant to the copyright license under the clause at 52.227-7013.

This document is available through Research Access, Inc. / 800 Vinial Street / Pittsburgh, PA 15212. Phone: 1-800-685-6510. FAX: (412)

321-2994. RAI also maintains a World Wide Web home page at http://www.rai.com

Copies of this document are available through the National Technical Information Service (NTIS). For information on ordering, please contact

NTIS directly: National Technical Information Service / U.S. Department of Commerce / Springfield, VA 22161. Phone: (703) 487-4600.

This document is also available through the Defense Technical Information Center (DTIC). DTIC provides acess to and transfer of scientific and

technical information for DoD personnel, DoD contractors and potential con tractors, and other U.S. Government agency personnel and their

contractors. To obtain a copy, please contact DTIC directly: Defense Technical Information Center / 8725 John J. Kingman Road / Suite 0944 /

Ft. Belvoir, VA 22060-6218. Phone: 1-800-225-3842 or 703-767-8222.

1

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

CMU/SEI-90-TR-24 i

Table of Contents

Preface 1

Introduction 3

Part I — Starting a Process Group 11

1. The Process Group 13
1.1. Costs and Benefits 14

1.1.1. Costs 14
1.1.2. Benefits 15

1.2. Organizing for Process Improvement: The Collaborators 17
1.2.1. The Steering Committee 17
1.2.2. Technical Working Groups 18

2. Assessments 19
2.1. Example of an Assessment Method 20
2.2. Principles 25
2.3. Phases of an Assessment 27

3. Action Plan 29
3.1. Structure 29
3.2. Development 32
3.3. Ownership 33
3.4. Action Plans With Multiple Assessments 36
3.5. Action Plans Without Assessment 36

4. Describing and Defining the Software Process 37
4.1. Describing the Existing Process 37

4.1.1. Documenting the Process: One Approach 38
4.2. Defining the Desired Process 40
4.3. Process Definition and CASE Technology 41

5. The Process Database 43
5.1. Measurement 43

5.1.1. Visibility 44
5.1.2. Types of Measurement 44
5.1.3. Definition of Measures 44
5.1.4. Suggestions 45

5.2. The Database 45
5.3. Defect Prevention 46
5.4. Accessibility 46
5.5. Lessons Learned: Beyond the Database 47

ii CMU/SEI-90-TR-24

Part II — Ongoing Activities of the Process Group 49

6. Beginning Continuous Improvement 51
6.1. Introducing the Change 51
6.2. Pilot Procedures 53
6.3. Beyond Pilots to Routine Use 54

7. Mechanisms for Information Transfer and Implementing Change 57
7.1. Information Transfer Mechanisms 57
7.2. Mechanisms for Implementing Technological Change 60
7.3. Applying Both Types of Mechanisms 60

8. Process Consultation 63

Part III — Membership and Placement 65

9. Process Group Membership 67
9.1. Selecting the Process Group Leader 67
9.2. Selecting the Process Group Members 68
9.3. Length of Membership 69
9.4. Advantages of Membership 69

10. Placing the Process Group in the Organization 71
10.1. Special Considerations in a Matrix Organization 72

Conclusion: A Final Word from the Authors 75

Acknowledgements 77

References 79

Appendix A. Characterizing the Software Process: A Maturity 87
Framework

Appendix B. The Quality Movement and Software Engineering Process 95
Improvement

B.1. Quality Technology Milestones 95
B.2. Quality Improvement Strategies 96
B.3. Process Management Approach 97
B.4. Software Quality Functions 99

B.4.1. Process Definition 100
B.4.2. Product Inspections 100
B.4.3. Process Audits 101
B.4.4. Software Quality Control 101
B.4.5. Process Quality Control 101
B.4.6. Software Design Improvement 101

CMU/SEI-90-TR-24 iii

B.4.7. Process Design Improvement 101
B.5. Quality Improvement Teams 102
B.6. Conclusion 103

Appendix C. Candidate Action Planning Process: The Search 105
Conference

C.1. Organizing the Conference 106
C.2. The Conference 106

Appendix D. An Introduction to Technological Change 109
D.1. A Brief Tutorial on Implementing Technological Change 109

D.1.1. Characteristics of the Change Process 110
D.1.2. Key Roles in the Change Process 111
D.1.3. Frames of Reference 112
D.1.4. Resistance to Change 112
D.1.5. How Much Change? 113

D.2. Technology Transfer 113
D.2.1. Context Analysis 114
D.2.2. Mapping 116
D.2.3. Boundary Spanners 118

Appendix E. Training and Education 121
E.1. Sources of Education and Training 121

E.1.1. Internal sources 122
E.1.2. External sources 122
E.1.3. Acquiring Course Materials 123
E.1.4. Criteria for Selecting Materials 124

Appendix F. Action Plan Guidelines 125
F.1. Strategic Plan 125

F.1.1. Introduction to the Strategic Plan 125
F.1.2. Overview 125
F.1.3. Process Improvement Goals 125
F.1.4. Motivation 126
F.1.5. Assumptions 126
F.1.6. Organizing for Process Improvement 126
F.1.7. Responsibility Matrix 126
F.1.8. Criteria for Success 126
F.1.9. Improvement Agenda 127
F.1.10. Guidelines for Planning Improvement Projects 127

F.2. Tactical Plan 128
F.2.1. Introduction to the Tactical Plan 128
F.2.2. Tactical Planning for Technical Working Groups 129

F.3. Tactical Planning for the Steering Committee 132

iv CMU/SEI-90-TR-24

F.3.1. Steering Committee Charter 132
F.4. Tactical Planning for the Process Group 132

F.4.1. Process Group Charter 132

Appendix G. Summary and Analysis of SEPG Workshop Data 133

Index 147

CMU/SEI-90-TR-24 v

List of Figures

Figure 1-1: Benefits of a Mature Software Engineering Process 15
Figure 2-1: Self-Assessment Map - 1 21
Figure 2-2: Self-Assessment Map - 2 23
Figure 2-3: Samples from the SEI Software Capability Evaluation 25

Questionnaire [TR23]
Figure 2-4: Sample questions from [Pressman88] 26
Figure 3-1: Action Plan Structure 30
Figure 3-2: Sequence of Activities for Generating Action Plans 34
Figure 3-3: Action Plan Owners 35
Figure 3-4: Organizational Architecture for Process Improvement 35
Figure 7-1: Mechanisms for Information Transfer 58
Figure 7-2: Example of Strategy for Software Process Improvement 59
Figure 7-3: Mechanisms for Implementing Technological Change 61
Figure 10-1: Placement in a Typical Matrix Organization 72
Figure B-1: The Evolution of Quality Assurance Technology 96
Figure B-2: The Shewart Plan-Do-Check-Act Cycle 98
Figure B-3: Process Management Approach 99
Figure B-4: Software Quality Functions 100
Figure D-1: Context Analysis 116
Figure D-2: Mapping Technology 117
Figure D-3: Boundary Spanner Roles 118
Figure G-1: Questionnaire Administered at the 1989 SEPG Workshop 134
Figure G-2: SEPG Staffing 135
Figure G-3: Technical Working Groups 136
Figure G-4: Summary of Working Group Data 137
Figure G-5: Age of SEPGs 138
Figure G-6: Number of Software Professionals Served by SEPGs 138
Figure G-7: Geographic Locations Served by SEPGs 139
Figure G-8: Level and Sponsorship of SEPGs 140
Figure G-9: Summary of Level and Sponsorship of SEPGs 141
Figure G-10: SEPG Actions to "Get Started" 142
Figure G-11: Near-Term Tasks 143
Figure G-12: Long-Term Tasks 144
Figure G-13: Key Accomplishments to Date 145
Figure G-14: Activities of Newer Versus Older SEPGs 146

Preface

The Software Engineering Institute (SEI) was established in 1984 at Carnegie Mellon
University as a federally funded research and development center. Its charter includes the
directive to expedite software engineering technology transfer leading to "rapid improvement
of the quality of operational software in the mission-critical computer systems" of the United
States Department of Defense (DoD).1 One aspect of the SEI’s work is to tap the tech-
nology transfer efforts already existing within the complex of organizations that comprise the
DoD and surrounding defense industry. These efforts include education and training,
software tools, newsletters, and briefings at all levels. There are also public-access
databases, such as the Ada Information Clearinghouse and those present on SIMTEL20;
national document distribution centers, such as the National Technical Information Service
(NTIS) and Defense Technical Information Clearinghouse (DTIC); and proof-of-concept
projects, such as those funded by Defense Advanced Research Projects Agency (DARPA)
and the Air Force Electronic Systems Division (ESD).

Synergism is needed to make these efforts more effective. Specifically, there is a need for
someone to actively coordinate and combine existing mechanisms to accomplish the chal-
lenging task of effecting rapid transfer of the technology and processes of an emerging
software engineering discipline. In response to this need, the SEI encourages and
facilitates the growth of expertise in technology transfer, that is, in the management of tech-
nological change within the DoD and the defense industry. One way the SEI does so is to
develop resource materials such as guidebooks and courses. Another way, one which has
great leverage, is to work through technology receptor groups located within defense or-
ganizations. The SEI is helping to establish receptor groups throughout the DoD, and is
providing them courses and materials on the management of technological change.

One important form of technology receptor group is the software engineering process group
(SEPG), which focuses on software process improvement. Working with managers and en-
gineers from software development organizations, the process group tracks, screens, in-
stalls, and evaluates new methods and technology that can improve the software engineer-
ing capability of an organization.

This guide was written to support process groups, especially those in corporations and
government agencies that have participated in SEI-assisted assessments and/or SEI self-
assessment training. In the future, the SEI will prepare other materials (courses,
workshops, other guides, and consulting activities) that will help software organizations im-
prove their development process and transfer new technology into practice.

1From the "Charter for the Department of Defense Software Engineering Institute," which accompanied the
Request for Proposal, dated June 15, 1984 (Section J, Attach. 12; Contract No. F19628-85-C-003).

2 CMU/SEI-90-TR-24

CMU/SEI-90-TR-24 3

Software Engineering
Process Group Guide

Abstract: Improving the process of software systems development and main-
tenance is the most reliable way to improve product quality. This document offers
guidance on how to establish a software engineering process group (SEPG) and
related software engineering process improvement functions. The process group
works with line organizations to improve process quality by helping to assess cur-
rent status, plan and implement improvements, and transfer technology to
facilitate improvement in practice.

Introduction

This guide was written to help organizations establish and sustain a process group as the
focal point of a software engineering process improvement program. The guide emphasizes
"what" over "how." It provides criteria by which improvement efforts can be evaluated, such
as, "What characterizes a good training program?" and "Who is a good candidate to serve in
the process group?" It does not provide a "cookbook" set of instructions, but it does contain
supplementary tutorial material and a reference list for those who wish to explore topics in
more depth; in some cases, reference material provides procedural "how to" guidance.

The guide is a good starting place for process improvement: it offers a basic introduction to
the subject and provides guidance for initiating and sustaining an improvement program in
an organization. The guide is as much concerned with the human side of stimulating a
higher quality process—that is, the organizational aspects of technological change—as with
the technology2 of improved processes, such as assessment methods and approaches to
process definition.

The guide is based on the experience of the authors as well as that of process groups that
were interviewed between October 1988 and March 1990, from the following companies:

• AT&T Bell Laboratories

• Boeing Aerospace

• Boeing Computer Services

• Computer Sciences Corporation

• Contel

2The term technology is used throughout this guide in the broadest sense. For example, this use of the term
would include software inspection as a peer review technology for detecting errors in software development work
products; computer-aided software engineering (CASE) as a technology providing automated support for per-
forming activities and creating work products in the software development process; and change management as
a technology for planning and implementing organizational change.

4 CMU/SEI-90-TR-24

• Digital Equipment Corporation

• General Dynamics

• GTE

• Hewlett Packard

• IBM

• NASA Goddard Space Flight Center

• Raytheon

• Systems Research and Applications

• TRW

• Westinghouse

Audience. The guide is intended, first and foremost, for members of process groups in
software organizations that are at maturity levels 1 and 2.3 Another important audience for
portions of the guide is the community of software developers and their managers who par-
ticipate in the process of software development and maintenance. Some sections may be
useful for higher level management, and others appropriate for staff in functions that may
collaborate with the process group, such as training and education, quality assurance, and
standards.

Tips for the Reader. The guide is organized into three parts. The first part, Chapters 1-5,
includes an overview of software engineering process improvement and the rationale behind
process groups. It also discusses activities that are performed in establishing a process
group for the first time, including obtaining sponsorship, performing assessments, planning,
creating process definitions, and setting up a process database.

The second section, Chapters 6-8, addresses activities that an established process group
would perform on an ongoing basis. These include facilitating technical working groups for
technology screening and evaluation; coordinating pilot uses of technology; consulting in
process improvement; and maintaining a relationship with sponsors to ensure continuing
support.

The third section, Chapters 9-10, addresses organizational issues. These include staffing
the process group and locating it effectively within the organization structure.

The appendices contain supplementary material. The first appendix (a reprint of
[Humphrey88]) describes the SEI software process maturity framework; readers not familiar

with this framework should read the appendix before going on to Part I of this guide. Other

3Maturity level 1 and 2 organizations are characterized by ad hoc approaches to software development; see
Appendix A for more details.

CMU/SEI-90-TR-24 5

appendices include a discussion of process improvement and the quality movement (by
David Card), a brief description of a planning process called a "search conference," tutorial
material on technology transfer and technological change in organizations, a discussion of
approaches to training and education, action plan templates, and a summary and analysis of
data collected from participants at the SEPG Workshop sponsored by the SEI on June
21-22, 1989.

Implicit in this guide is the need for organizational change. Software process improvement
occurs through change, and it is the job of the process group to foster that change. The
authors thus encourage liberal translation, particularly of vocabulary, so that the principles
and guidelines contained here have maximum benefit for the reader’s organization.

Process Improvement: What Is It And Who Owns It?
Quality is a key factor today in international business competition. And quality, most people
would now agree, is not something added to the product during testing at the end of the
development process; it is something everyone owns and is responsible for throughout that
process. From Ford’s "Quality is Job 1" slogan to the DoD Total Quality Management
program [TQM88], industry in the United States seems to be adopting what the Japanese
call kaizen, meaning [Kenkyusha54] "continuous improvement." Software development or-
ganizations are no exception to this: Hewlett Packard measures its progress through a
company-wide program in software metrics [Grady87], and both AT&T Bell Laboratories and
IBM have devoted entire issues of their technical journals to software quality technology
[Myers86, Gershon85].

How do organizations move from their current state to one where there is continuous im-
provement? First, they must establish an organizational commitment to quality; next, they
must create an entity in the organization that is the focal point, some group responsible for
facilitating actions supporting that commitment; and finally, they must carefully plan each
step to move from the current situation to the desired one. In the software industry, the or-
ganizational focal point is a software engineering process group, and the model for the step-
by-step change is the process improvement cycle. In fact, the phrase "software process
improvement" is often used as a synonym for "software quality."

The following sections describe the process improvement cycle and the role of the process
group and others within a software engineering organization.

The Process Improvement Cycle
Software process improvement is a continuous cycle. The following steps are adapted from
the well-known Shewart cycle [Deming86]. See also Figure B-2, page 98.

1. Set expectations.

2. Assess the current practice.

3. Analyze the variance between expectation and practice.

6 CMU/SEI-90-TR-24

4. Propose changes that will reduce the variance and thereby improve the
process.

5. Plan the integration of the improvements into the existing process and update
the process definition. If a formal process definition does not exist, it should
be documented now.

6. Implement the improvements.

7. Perform the process as it is now defined.

8. Start over.

Each of the steps is discussed below.

1. Set Expectations. Expectations of what process improvement goals are desirable—from
both a competitive and technical perspective—may be set in a number of ways. Senior
management typically sets its goals in response to business conditions, such as reductions
in the DoD budget, offshore competition, and changes in contractual requirements such as
software warranties. Managers may receive this information from technology tracking offices
or market research functions within their own organization, from colleagues in their own or-
ganization or in the larger professional or business community, from business or technical
literature, and from consultants. In addition, internal engineering organizations may lobby
senior executives for new directions and change; this is often the case in software organiza-
tions where senior managers may be unfamiliar with the technology and competition.

Eventually, all this information may lead to significant policy changes. For example, IBM has
a policy that every new software release will have fewer defects than the mature release or
product it is replacing. Motorola has a policy that to continue to do business with them,
current suppliers must apply for the Malcolm Baldridge National Award for Quality by 1992.
Actions such as these lead to a shared vision among consumers, producers, and prac-
titioners of what it means to have quality of product and process.

High-level organizational expectations must, of course, be translated to specific quality goals
and lower level operational objectives. Appendix A presents general guidelines for objec-
tives that are likely to be appropriate for software organizations at various stages in their
evolution.

2. Assess the Current Practice. Assessing the current practice can be accomplished in a
number of ways. One example is the SEI software capability evaluation method [TR23],
which is now being used as part of source selection and as a government contract manage-
ment vehicle [Thomas88]. Variants of this method include the SEI-assisted assessment and
the SEI self-assessment procedure; organizations can use the latter to assess themselves.
Another example is the Software Development Capability/Capacity Review [ASD800-5] of
the Air Force Aeronautical Systems Division, also used as part of source selection. (See
Chapter 3 for more information about assessing current practice.) Whether conducted by an
outside agent or by an organization for their own purposes, assessment procedures such as
these give organizations a systematic and thorough way to examine and document the cur-
rent status of their software development process.

CMU/SEI-90-TR-24 7

3. Analyze the Variance Between Expectation and Practice. Analyzing variance means
determining clearly and specifically what areas fall short of expectations. The assessment
results will have identified areas for investigation. For example, given an objective of having
all projects under configuration control within a year, a group of software project managers
will determine the current situation and report, in detail, exactly where it falls short. If routine
cost and schedule estimation is another objective, other managers and engineers might
review current obstacles to its use. They might note lack of rewards, tools, or education, for
example. Based on the results of an assessment, managers may also refine their expec-
tations and goals.

Organizations with mature processes (maturity levels 4 and 5 in Appendix A) analyze the
variance between expectation and practice using the tools of statistical process control
[Feigenbaum83, Ishikawa85]. Such practices can simultaneously show the quality goals

and the outcome of quality practice. Knowledge of software engineering process and tech-
nology, and experience in software development and management lead to the generation of
viable alternatives to current practice. Selection can be made by considering these alter-
natives in the context of analysis of data from actual practice. Thus the process improve-
ment approach leads systematically to reduction of the variance to an acceptable level. Ap-
pendix B provides an introduction to the subject and pointers to additional references. Ex-
cellent additional sources are [Harrington87] and [Humphrey89], both based on the pioneer-
ing work of [Deming86].

4. Propose Improvements. Once areas needing improvement have been identified, an
organization must determine what activities are appropriate. Alternatives are explored and
decisions made. If a cost-estimation procedure needs to be developed, for example, re-
quirements for it need to be analyzed and carefully specified. The procedure, and possibly
tools to support it, can then be obtained or created.

5. Plan the Integration of Improvements. Planning the integration of improvements into
existing approaches to work is closely connected with proposing those improvements. In
both activities, potential users can provide valuable input, resulting in an effective approach
to helping projects use the improvements.

If the organization does not have a formal process definition, this stage of the improvement
cycle is the time to create it. If a formal process definition exists, this is the time to update it.

The field of organization development within management science has much to offer those
who plan and implement the technological changes required by improvements. A brief
tutorial on change management and technology transition is provided in Appendix D.

6. Implement Improvements. The process group helps plan and execute improvements,
but the actual changes occur in the line organizations that develop software. These changes
then become part of the ongoing practice and should be reflected in an updated process
definition or description.

Analyzing variance, proposing improvements, planning the integration of improvements, and

8 CMU/SEI-90-TR-24

implementing improvements are all aspects of the process group’s job of implementing
change. One useful model of this process comes from [Freeman87]: each new improve-
ment, along with its planning and installation processes, can be treated as a project. Chap-
ters 6 and 7 discuss this approach in more detail.

7. Perform the Process as Defined. After improvements are in place, they become part of
routine operation within software development or maintenance functions.

8. Start Over. Periodically or after several improvements have been completed, the or-
ganization should begin the cycle again. Eventually, as the organization becomes more
adept at the improvement process, and as it develops a well-measured, well-managed
process, continuous improvement itself becomes routine.

Who is a Part of Process Improvement?
Indicating that everyone in an organization "owns" software software process improvement
may be appropriate for high-level policy and corporate quality philosophy. However, more
specificity is required for making continuous improvement operational. Because the process
group works as part of an organization, and must also work with groups and individuals
within that organization, it is helpful to look at the specific contributors to improvement ef-
forts.

Although organizations, whether corporations in industry or government labs and agencies,
vary widely, they have some essential functional areas and levels in common. Each area or
level plays particular roles and performs certain functions with respect to owning quality.
Each of several key areas is described below and discussed briefly. Further discussion of
the roles of management and engineers in adopting new software engineering technology
may be found in [Ebenau83].

Executive management. Executive or senior managers play a major role in setting and
directing strategy for continuing process improvement across their organizations. They also
provide sponsorship of improvement efforts by taking action in support of the strategy. As
efforts to improve the software process begin, they may, for example, establish a high-level
steering committee to provide periodic broad review of organization-wide activities. Later,
they may review the continuing education policy and budget to ensure sufficient support for
process improvement. One senior-level advocate of software process improvement can be
a catalyst for moving an entire organization toward significant improvements in software
quality.

Middle management. Middle managers often control the disbursement of resources for
technical projects. They support process improvement efforts by their willingness to revise
existing and planned resource strategies. They may, for example, recast schedules to ac-
commodate the implementation of a new technology; they may allow engineers to work on
technical committees to rewrite a process definition for the use of Ada or for code inspec-
tions; or they may sit on committees themselves to examine and improve software manage-
ment practice.

CMU/SEI-90-TR-24 9

First-line supervisors and engineers. Software engineers contribute to quality by building
it into the systems they create and maintain, and by joining together to think about how they
build systems. Software engineers may work on technical committees that are chartered to
track, evaluate, implement, and consult on new technologies; they may serve as technical
mentors for new employees; they may build tools; and they may teach courses or hold infor-
mal seminars. Most valuably, they may collaborate on new approaches that might lead to
improved software processes, and provide crucial feedback on what works, what doesn’t,
and why.

Staff organizations. Corporate or project/program level quality assurance functions may
focus on quality technology as well as quality audits. When this is the case, they may be
willing to collaborate in preparing training and education, especially for management, in the
continuous improvement philosophy. They may also be able to provide important visibility at
a corporate level for process improvement efforts that senior executives, if they are un-
familiar with software, may overlook.

Education and training groups may offer expertise for developing and purchasing courses in
support of particular improvement efforts, such as a new approach to technical reviews or a
CASE tool set. They may also provide administrative and logistical support by announcing
course offerings, registering and tracking students, and supplying and maintaining materials.

Even though everyone owns software quality, each individual or group will implement that
ownership in a very specific way. Part of the effort of the process group will be devoted to
helping to define and plan these specific activities. The following pages provide information
that will help process groups to do their job.

10 CMU/SEI-90-TR-24

CMU/SEI-90-TR-24 11

Part I — Starting a Process Group

12 CMU/SEI-90-TR-24

CMU/SEI-90-TR-24 13

1. The Process Group

The software engineering process group is the focal point for process
improvement. Composed of line practitioners who have varied skills,
the group is at the center of the collaborative effort of everyone in the
organization who is involved with software engineering process im-
provement. Group size is usually equal to 1-3% of the development
staff. Because the process group is small, it relies upon outside sup-
port, in particular, the support of a steering committee and technical
working groups.

Most organizations have many different projects or contracts underway simultaneously, and
perhaps several different software development or maintenance divisions. Thus, many in-
stances of the process improvement cycle may be operating concurrently. For example,
one part of the organization may be following up on assessment findings by examining cur-
rent cost-estimation practice, and another may be training software engineers in code in-
spections. The process improvement cycle works both globally across the organization,
through policy changes and process assessments, and locally, with the implementation of
particular changes. Assessments lead to strategy and policy updates; these updates lead to
plans for the incorporation of new approaches to management and new software technol-
ogy; the results meanwhile must be tracked and reported.

The software engineering process group is a central force for process improvement. The
group maintains the overall view of current efforts and facilitates these efforts on a continu-
ing basis. Its members foster collaboration among everyone in the organization who is in-
volved with software process improvement. Following are ongoing activities of the process
group:

• Obtains and maintains the support of all levels of management.

• Facilitates software process assessments.

• Works with line managers whose projects are affected by changes in software
engineering practice, providing a broad perspective of the improvement effort
and helping them set expectations.

• Maintains collaborative working relationships with software engineers, espe-
cially to obtain, plan for, and install new practices and technologies.

• Arranges for any training or continuing education related to process improve-
ments.

• Tracks, monitors, and reports on the status of particular improvement efforts.

• Facilitates the creation and maintenance of process definitions, in collaboration
with managers and engineering staff.

• Maintains a process database.

14 CMU/SEI-90-TR-24

• Provides process consultation to development projects and management.

The process group is not part of product development but is staffed by practitioners. As a
result, it has expertise in software engineering. It may also have, and at any rate should
develop, expertise in process definition, organizational change, and technology related to
improving or measuring quality. The process groups that were interviewed in preparation for
this guide were predominantly staffed by engineers, highly motivated and generally very ex-
perienced people, many of whom had already worked for years as individual champions to
improve the software engineering process in their organizations. Staffing the process group
with engineers who have customarily worked on building systems reassures the organiza-
tion at large that the work of the process group will be practical and relevant.

One way to view the process group is as a permanent task force. If software process im-
provement were a one-time occurrence, then a task force—most likely of engineers and en-
gineering managers—would be created. Because this effort is ongoing, the group that sup-
ports it must also be ongoing. The challenge of the process group and its managers and
sponsors is to maintain the enthusiasm and vitality of a task force on a continuing basis.

1.1. Costs and Benefits

SEI interviews with existing process groups indicated that few, if any, process groups had to
present a persuasive business case to become chartered and operational. Software en-
gineering process improvement was a concept with inherent merit in their organizations:
competitive pressures required a steady increase in quality, which in turn required a commit-
ment to improve. Nonetheless, it should be helpful to look briefly at specific costs and
benefits of process groups and related efforts.

1.1.1. Costs
The costs of establishing the software engineering process group and related functions—the
process improvement infrastructure—are primarily labor costs. These are consumed in staff
for the software engineering process group, and in the time spent in planning and im-
plementing improvement actions. Often these are costs that would be expended on similar
activities in any case, but in a less organized and therefore less visible way.

In organizations of a hundred or more software professionals, the recommended budget for
a process group [Humphrey89] is normally 1% to 3% of the overall software development
budget of the organization it supports.4 Appendix G contains data gathered informally at the
SEPG Workshop held by the SEI in 1989. The percentage of overall budget spent by
workshop participants on process groups varied widely, and was generally much lower than
1%.

4Contel spends about 6%. General Motors spends about 1/2 of 1% on a $3.8 billion internal budget for
technology exploration [Trainor89], which is only a portion of the process group’s responsibilities.

CMU/SEI-90-TR-24 15

There are different approaches to budgeting funds for process groups. Some organizations
use research funds, and others include the costs in overhead. Several process groups sur-
veyed charge all their costs (direct, indirect, research, and development) back to users.

1.1.2. Benefits
The primary benefit of an improved—that is, more disciplined—software process is im-
proved visibility of the process. This visibility makes the process more manageable during
software development and maintenance, thus reducing risk. Schedules become more pre-
dictable, as do costs. Software is of higher quality at delivery and is easier to maintain. The
cost of investment in process improvement work is amortized and ultimately more than
repaid, as is illustrated in Figure 1-1.

Extended
Life Cycle or

110 120 130

New Model

N'

0

M

Design &
Development

Phases

20

40

60

80

100

P
er

ce
nt

 o
f L

ife
cy

cl
e

C
os

t

Reduced
O&M
Cost

Cumulative
D&D
Cost

10 20 30 40 50 60 70 80 90 100

N

O&M Phase

Increased Productivity
(or less rework)

Could Lower These Costs

Present
Model Improved

Quality Results
in 20-30% Cost

Reduction

Cumulative
Total Cost

Percent of (Present) Life Cycle Elapsed

Figure 1-1: Benefits of a Mature Software Engineering Process

Reprinted from [Jacobson89].

Another benefit is the improved prospect of winning and keeping contracts when the govern-
ment includes software process maturity in its source selection and contract management
criteria [Thomas88]. Moreover, if certain contract incentives are inaugurated, developers
would be paid an award fee of up to 15% based on software quality as assessed during the

16 CMU/SEI-90-TR-24

early post-deployment phase [Jacobson89]. A mature development process would make it
more likely that the award fee would be earned.

CMU/SEI-90-TR-24 17

An improved process also allows easier acquisition and adoption of new technology be-
cause that technology can be acquired in direct support of defined processes. The process
definition necessary to a disciplined software process is also prerequisite to reasoned an-
alysis about what software tools and methods best support the goals and the creation of
products and systems within the organization.

1.2. Organizing for Process Improvement: The Collaborators

Process improvement is a long-term effort. The working relationships between the process
group and the rest of the organization must be ongoing, and management oversight and
direction must continue over the long term. This section describes some organizational ap-
proaches that help keep efforts to change visible in the software engineering organization.
Because organizational terminology varies widely, readers are encouraged to consider the
spirit of each of the entities described and to implement their functional equivalents in a
suitable way.

1.2.1. The Steering Committee
One means by which line and supervisory management guide process improvement is
through membership on a steering committee that meets periodically (perhaps monthly),
translates related corporate policy, and sets priorities. The committee reviews the results of
assessments, charters technical area working groups to prepare plans, approves those
plans in priority order, monitors the progress of the working groups, and helps obtain
resources for the process group. In this way, the steering committee and the manager to
whom the process group reports provide important and highly visible support for process
improvement. Support should also be cultivated at any other management levels that in-
fluence or are affected by the process improvement work.

The ongoing work of a standing steering committee includes policy oversight, resource and
process management, integration and consensus building among groups having different
perspectives, and serving as liaison to higher level steering groups or corporate planning
organizations. In two of the companies interviewed, the steering committee that oversees
the process group reports to a higher level steering group that has broader concerns.
Software process improvement issues are thus connected to product quality issues on a
corporate level.

The steering committee provides additional organizational benefits. Kanter [Kanter83] dis-
cusses at length the need to foster open communication and "integrative approaches" that
bridge interest groups. Open communication is important because it gives managers
"crosscutting access" to information, resources, and support outside their immediate
domain. Kanter refers to "innovating" organizations, meaning organizations that foster
change, both technological and non-technological, that can lead to greater productivity. In
such organizations, Kanter claims there is benefit in

18 CMU/SEI-90-TR-24

... drawing members from a diversity of sources, a variety of areas.... It is not the
‘caution of committees’ that is sought—reducing risk by spreading
responsibility—but the better idea that comes from a clash and an integration of
perspectives. (p. 167)

Often software managers have no opportunity to work with their peers except in steering
committees; these committees provide a valuable opportunity to compare notes, share
ideas, sharpen thinking in a context of "we’re all in this together." The Software Manage-
ment Steering Committee at Westinghouse was created from an older and more informal
committee of middle-level software managers. This group has now worked together for
nearly ten years. Members confirm that it has required some effort to learn how to reach
consensus, but that it is worth the investment to be able to rely on each other for honest and
constructive criticism offered from many points of view.

1.2.2. Technical Working Groups
Humphrey recommends that organizations "...aim at full-time assignments to the SEPG of
about 2 percent of the software professionals" [Humphrey89]. This level of staffing was
rarely found either in the organizations interviewed or in those who sent participants to the
SEI 1989 SEPG Workshop (see Appendix G). Moreover, process improvement is such a
large task that process groups need to augment their permanent membership. Groups
usually do this by taking advantage of the experience and expertise of the population to be
served.

Standing working groups of engineers can accomplish a great deal on a part-time basis.
These groups are chartered to work on a wide range of issues from selecting new design
methods to choosing the measures of software productivity and quality to be included in the
process database.

The members of working groups, engineers from a number of project types and application
domains, benefit for the same reason their managers benefit from having a steering com-
mittee, that is, cross-fertilization. And since working groups are typically staffed by senior
people, they supply ready consulting expertise. Members are also a natural choice to serve
as representatives to professional and technical organizations such as AdaJUG and the
IEEE Computer Society.

CMU/SEI-90-TR-24 19

2. Assessments

Assessment often provides the stimulus for provess improvement.
Several methods and questionnaires are available that result in a written
set of findings and recommendations. High-level sponsorship, confiden-
tiality, and collaboration are the principles that guide successful assess-
ments.

Software process improvements are often initiated as a result of an assessment of the cur-
rent situation. The impetus for beginning the improvement cycle may be a general aware-
ness of the need to improve software productivity and quality. It may also result from unsuc-
cessful attempts to incorporate CASE tools, or from a review of increasing numbers of cus-
tomer complaints. While both management and practitioners may agree that improvement
is needed, the organization must have a clear set of priorities before planning begins. The
results of an assessment provide a basis for planning and, later, for process group work, as
well as a benchmark against which process improvement efforts can be measured.

One of the forces prompting software process assessment is the DoD initiative to select
software contractors based upon the quality of their development process as revealed by
such an assessment (see, for example, [Thomas88]).

Formal assessment procedures based on questionnaires and interviews include the SEI
Software Capability Evaluation [TR23], the Air Force Software Development
Capability/Capacity Review [ASD800-5], and the approach described in [Pressman88]. All
three approaches call for a written report that describes strengths and weaknesses and in-
cludes recommendations for addressing weak areas. This information is input to an action
plan for overall, long-term process improvement. The assessments typically result in an
increased awareness of the quality and characteristics of an organization’s current software
process, including procedures, technologies, and the capability to use them.

In addition to formal assessments, there are other ways to identify areas needing improve-
ment. These include special meetings such as search conferences (see Appendix C), focus
groups, and interviews or surveys of technical staff and management. Prior records of con-
sensus on areas needing work may also be tapped. For example, many organizations
routinely reassess themselves as part of strategic planning or project postmortems, and it is
useful to review findings from these activities. Some life-cycle definitions include a lessons
learned activity [SMAP4.3, Gale90, Mays90]. These techniques usually address specific
areas of concern; and because they may be less structured or require less time, they can be
used more frequently. Thus, they complement formal assessments.

A thorough, formal assessment is the best way to initiate the development of organization-
wide strategies and broad changes that will lead to software process improvement. One
reason for this is that an assessment offers a forum for presenting concerns and ideas, par-
ticularly in the case of practitioners. The high-level sponsorship typically obtained for an
assessment assures participants that follow-up action will be taken. This assurance of

20 CMU/SEI-90-TR-24

results generates enthusiasm for participation not only in the assessment activities, but also
in subsequent planning and improvement projects.

An initial assessment can be a prelude to the establishment of the process group or can be
the first task of a newly formed process group. A follow-up assessment in 18 to 24 months
provides an opportunity to review progress.

2.1. Example of an Assessment Method

This section summarizes the SEI self-assessment approach, which is described in more
detail in [TR7]. The approach uses a questionnaire developed at the SEI (see [TR23]) and
based on the framework described in Appendix A as well as [Crosby79]. Figures 2-1 and
2-2 present the SEI process in some detail. Figure 2-3 shows sample questions. For com-
parison, Figure 2-4 lists some questions from [Pressman88], which describes a different ap-
proach along with related process improvement actions.

In using SEI methods, it is common to assess about a half dozen projects and then analyze
the responses to the assessment questionnaire across the projects, across levels (manage-
ment and practitioner), and across types of organizations (projects as well as functional
areas, such as software quality control, standards, and independent testing). The cross-
section views that result are often very fruitful in identifying issues. For example, if half the
assessed projects use software configuration management (SCM) and the other half do not,
clearly there is no organization-wide practice of SCM, even though there may be a policy,
standard, training course, and SQA oversight. SCM then becomes an area requiring further
investigation by the assessment team during the interview sessions.

Interviews are conducted after the questionnaire is completed and responses analyzed by
the assessment team. The interviews consist of discussions among assessment team
members and project personnel and functional area specialists to elicit concerns and ideas
for improvement. These discussions typically end with an open-ended question such as: "If
you could improve just one facet of the process, what do you think would have the greatest
leverage, and why?" With most groups, this question elicits numerous creative ideas.

A
S

A
P

 a
ft

er
 B

ri
ef

in
g

B
rie

fin
g

A
tte

n
d
ee

s
S

E
I.

In
te

re
st

ed
 P

ar
ti

es
S

en
io

r
M

gm
t.,

 S
A

T
 L

ea
d
er

G
u

id
e

d
 C

as
e

St
ud

y

22 CMU/SEI-90-TR-24

P
ro

je
ct

 L
ea

de
r

D
i

s
c

u
s

s
i

o
n

s

 . .
 . .

 ..
 . .

. ..
 . .

. . .
 . .

. . .
 . .

.
 . .

 . .
 . .

 . .

::::
::::

::::
::::

::::
::

P
re

pa
re

 A
ct

io
n

P
la

n

R
ec

om
m

en
da

tio
ns

P

re
se

n.

A
ct

io
n

P
la

n

24 CMU/SEI-90-TR-24

CMU/SEI-90-TR-24 25

1.1.1. For each project involving software development, is there a
designated software manager?

1.1.6. Is there a software configuration control function for each
project that involves software development?

1.3.4. Is a mechanism used for managing and supporting the intro-
duction of new technologies?

2.1.1. Does the software organization use a standardized and
documented software development process on each project?

2.1.12. Are internal design review standards applied?

2.1.17. Is a mechanism used for ensuring that the software design
teams understand each software requirement?

2.2.3. Are statistics on software design errors gathered?

2.3.7. Is a mechanism used for initiating error prevention actions?

2.4.8. Is a mechanism used for controlling changes to the software
requirements?

Figure 2-3: Samples from the SEI Software Capability Evaluation Questionnaire [TR23]

All questions are to be answered Yes or No.

2.2. Principles

Certain basic principles apply to assessments, regardless of the specific approach; they are
discussed briefly here.

Sponsorship. Assessments must have a sponsor—the higher the sponsor’s position in the
organization, the better. The sponsor selects the assessment team, provides authorization
for the team to meet with staff and conduct the assessment, and promises in advance to
respond to the findings and recommendations. By being personally involved, the sponsor
communicates to the organization that the assessment, a first step in process improvement,
is critical and will shape the priorities.

Confidentiality. It is vital to solicit the opinions of the practitioners "in the trenches" (includ-
ing project leaders) because they are in the best position to know the status of the present
practices. However, developers familiar with possible shortcomings of the existing process

26 CMU/SEI-90-TR-24

8.1. List by priority five areas of software project planning,
development, tracking, and control that need improvement.

9.1. List by priority five areas of software project specifica-
tion, development (design, coding) testing, maintenance that
need improvement.

12.1. Describe any project management methodology that is actively
applied in your group. How long would it take to determine
the exact status of a project (in minutes)?

12.7. Do you have a formal software configuration management ap-
proach?

12.8. Do you have a formal metrics collection program in place?

13.1. Do you conduct reviews of computer software as it is being
developed?

Provide data (if such data can be easily collected) for each
software development application area (e.g. MIS, engineer-
ing) separately:

18.1. Delivered source lines per person per year (average) for all
projects (include all specification, design, test work)?

18.7. Number of days of training per software manager and prac-
titioner per year? Is this number mandated?

Figure 2-4: Sample questions from [Pressman88]

would be reluctant to discuss them if there were a chance their comments could affect them
in an adverse way. To get an accurate picture of the software engineering process, there-
fore, the assessment team must ensure confidentiality. The team must be careful in ag-
gregating data (especially with small sample sizes) to present composite findings that
protect the identity of the contributors. For the same reason, no one who is involved in
reviewing, supporting, or managing any projects that are being assessed should participate
on the assessment team.

Collaboration. The assessment process is based upon the belief that the local software
practitioners are the best sources of information on the current practice and that they have
the greatest interest in its improvement. The assessment itself demonstrates the value of
collaboration across levels and functional units. The assessment process, therefore,
represents an opportunity to show practitioners that their ideas are important and that their
support is prerequisite to team success.

CMU/SEI-90-TR-24 27

2.3. Phases of an Assessment

Assessments are typically conducted in four phases:

1. The sponsor and, if possible, a representative cross-section of the sponsor’s
organization make a commitment to the full assessment process. This com-
mitment includes a promise of personal participation and agreement to follow
up on recommended actions.

2. Preparation is made for the on-site assessment. An assessment team is
selected and trained, and an assessment schedule is approved.

3. The assessment is conducted. Practitioners who will be answering questions
and participating in the assessment receive introductory presentations. The
assessment questionnaire is answered, and the assessment team analyzes
the resulting information. Finally, the team presents preliminary findings to as-
sessment participants and senior management as a "sanity check."

4. The assessment team prepares a written report of findings and recommen-
dations, and the report is formally presented to the organization.

The assessment is just the beginning of software engineering process improvement; it is
similar in many ways to the requirements analysis process. After the assessment, the or-
ganization needs a plan of action for implementing the recommendations. Action planning is
discussed in the next chapter.

28 CMU/SEI-90-TR-24

CMU/SEI-90-TR-24 29

3. Action Plan

The action plan is a formal, written response to the assessment, and the
"map" for improvement. It is actually a set of plans—high-level strategic
plans, tactical plans for each technical area, and operational plans.

The action plan is the heart of software engineering process improvement. The action plan
grows out of a broad collaboration of all parties involved in improvement. It documents the
following:

• Overall strategy for the improvement effort.

• Major areas that will be addressed, and general guidelines on how to improve
in other areas.

• Underlying motivation for the process improvement effort.

• Procedures for planning improvement tasks for specific projects in each major
area of improvement.

• Groups responsible for taking action, the resources needed, and the schedule.

This chapter discusses the components of the action plan, the planning process, and the
ongoing responsibility for maintaining and updating the plan. The discussion assumes that
there has been an assessment; a brief section at the end of the chapter addresses action
planning when this is not the case.

3.1. Structure

The action plan is a set of plans and guidelines. Together these plans and guidelines ad-
dress the fourth, fifth, and sixth steps in the process improvement cycle: propose improve-
ments, plan the integration of the improvements and update affected process definitions,
and implement the improvements.

Figure 3-1 illustrates the action plan structure. The strategic plan describes the overall
motivation, direction, and vision. The tactical plans focus on broad functions (such as the
process group) that benefit the overall organization and on key technical areas in which
work will support the strategy. The tactical plans include templates and guidelines to help
individual projects adopt a particular technology or procedure smoothly. The improvement
activity plans,5 that is, operational plans, instantiate the guidelines for each project. If this
structure is adhered to, each improvement activity will be fixed within the context of the over-
all improvement effort. Appendix F provides annotated outlines of all three plan types.

5The terms improvement activity plans and operational plans are used interchangeably in this chapter and in
Appendix F. Technically, all levels of the action plan are improvement plans, but the term improvement activity
plans is used to convey a specific instance of the overall improvement activity; for example, an effort to create
configuration management procedure for all projects.

30 CMU/SEI-90-TR-24

Action Plan
Strategic Plan

Tactical Plans:
 Tactical Plan 1
 Tactical Plan 2
 Tactical Plan 3
 .
 :

Tactical Plan 1

1. Technical Working Group
 charter

2. Plan for review and
 selection of candidate
 technologies & processes

3. Plan for development of
 an improvement activity
 plan template

5. Guidelines & examples for
 completing template

7. Lessons learned from
 projects

6. List of completed templates

8. List of contacts
 a. Working Group
 b. Projects with experience

4. Template for improvement
 activity plan

Improvement Activity Plan

1. Overview
 •Goals and objectives
 •Related policies
 •Needs analysis
2. Technology description
3. Enabling technology
 description
4. Sources for technology
 and related services
5. Purchases
6. Tailoring
7. Education and training
8. Technology selection
 procedure
9. Evaluation procedures
10. Schedule and responsibilities

Tactical Plan n

Part 1

Part 2

Figure 3-1: Action Plan Structure

CMU/SEI-90-TR-24 31

The strategic plan is based on the findings from the assessment. It describes the motiva-
tion and direction for addressing those findings within an improvement program. The plan
might begin with a statement such as this:

We plan to increase our organization’s software process capability to Level 3 in
the maturity framework by the end of fiscal year 199x. We intend to accomplish
this incrementally, with an average of two specific major improvement efforts per
project per fiscal year. We will spend approximately 10% of our overhead budget
on this effort. We are making these improvements to strengthen our position in a
marketplace that increasingly values quality.

The tactical plans include charters for the following:

• Software engineering process group.

• Management steering committee.

• A technical working group for each technical area necessary to meet the
strategic goal.

The plans also describe the direction of work in each area and would be produced by com-
mittee or group representatives. If groups already exist whose domain is similar to the sug-
gested working groups or committees, those groups should be incorporated into the action
plan and process improvement framework.6

The remainder of the tactical section of the plan contains two major parts, which should be
developed and delivered in sequence:

1. The plan for addressing a particular technical area. Information includes how
to study the alternative technologies and make selections, and how to con-
sider the impact of that technology (e.g., the need for training and worksta-
tions).

2. A template for planning the implementation of those decisions on a per project
basis, that is, a template for the operational plans.

These sections serve as guidelines for creating operational plans for specific improvement
actions in projects. For example, if the first portion of the tactical plan charters a technical
working group on Ada, then the guidelines for producing the operational plan might offer an
Ada-specific planning template, developed by the working group, that would address how to
incorporate the use of Ada at the beginning of a new contract or project. The working group
might also include reference material and a checklist of activities that projects that have al-
ready adopted Ada have found useful, such as particular types of training sessions and
compiler selection procedures. Finally, the guidelines should include an example of a com-
pleted template, prepared by a project with experience.

6A good example of an action plan containing working group charters and an excellent discussion of overall
process improvement structure can be obtained by contacting Ms. V. Mosley, Westinghouse Electronic Systems
Group, M/S 5370, PO Box 1693, Baltimore, MD 21203; phone (301) 765-5560.

32 CMU/SEI-90-TR-24

Operational plans are developed for a particular project working on improvement in a par-
ticular area. For example, a working group on technical reviews develops a general plan
describing the type of reviews used in an organization and guidelines on best practice. A
particular project then tailors the general plan, adding details such as the name of the
reviews coordinator, conference rooms set aside on a standing basis for holding reviews,
the name of the secretary responsible for organizing review meetings and providing duplica-
tion service, and a set of checklists for reviews of various types common to that project. A
member of the working group should assist project members in tailoring the plans, and
should consult or "trouble shoot," especially when the new procedures are first used.

3.2. Development

The process of developing an action plan should build on the momentum begun with the
assessment and its findings and recommendations, and broaden the scope of involvement
by members of the organization at as many levels as possible. One former SEI resident
affiliate, Kevin Kendryna from the Naval Undersea Warfare Engineering Station, has noted
that the action plan is only as good as the action planning process.

The objectives of the process are to do the following:

• Enlist the support of those who will be affected by the improvement effort.

• Collect the best ideas about improvement and put them in writing.

• Develop a prioritized list of tasks that are feasible and on which all levels of
management and practitioners agree.

• Clearly articulate the motivation for making the proposed improvement.

There are a number of approaches to developing an action plan that will meet these objec-
tives. They range from corporate strategic planning efforts to broadly inclusive search con-
ferences (the subject of Appendix C). Whatever the approach, it should build upon assess-
ment findings and aim at developing, as specifically as possible, a vision of the improved
organization and the motivation to drive the change. The approach should be selected
based on the best prospects for its effectiveness in a particular setting.

Both the search conference and the more conventional strategic planning approaches have
advantages, depending on the corporate culture. Corporate strategic planning is often the
norm in a strongly centralized organization, while search conferences are more likely to
succeed in a highly participative enterprise. Centralized strategic planning draws on the
wisdom and breadth of perspective of upper managers but may not result in depth of infor-
mation or buy-in at lower levels. The multi-level, participative design of a search conference
draws on a rich range of organizational experience, but senior managers may not have con-
fidence in the results, and even lower level managers may feel a loss of power and in-
fluence.

Another approach is to assemble a working group that surveys participants in the improve-

CMU/SEI-90-TR-24 33

ment process, drafts the action plan, conducts reviews, and obtains buy-in at as many levels
as possible. An advantage of this approach is that it is relatively less work than a search
conference yet still taps a broad population. A disadvantage is that there is no direct com-
munication between organization levels or between people holding different viewpoints. Be-
cause enthusiasm for the process is largely contained within the working group, as is in-
tegration of perspectives, working groups may be more viable in the role of implementors of
action plans.

Figure 3-2 illustrates four possible sequences of activities for creating action plans.

It is most important to sustain broad enthusiasm for software process improvement. This is
best done by enlisting support during the planning phase, creating a planning document that
effectively communicates the process improvement vision and the motivation for improve-
ments. To prevent those involved from getting "bogged down" in generating a stack of
detailed plans, the action plan is hierarchical and modular.

A month or so after the assessment results have been presented, the strategic action plan
should be released to all those affected by the plan. The challenge is then to encourage a
high level of interest among them, while the working groups develop more detailed tactical
plans. Maintaining interest is best accomplished through broad participation in the planning
process; it is critical to keep everyone informed. There should be activities that supplement
the planning process and that are broadly accessible; major events should occur about
every six months. Examples include:

• A twice yearly review of the improvement plan and its status by a board of out-
side advisors who report to the steering committee.

• Open status review sessions held by working groups.

• An annual symposium that includes reports on the progress of the process im-
provement projects.

• Reviews of related technology that was screened or applied successfully, and
informal working sessions for giving feedback to technical working groups.

There is a considerable technology of action planning, so elaboration is beyond the scope of
this guide. The interested reader is encouraged to start with (listed alphabetically)
[Lorange84], [Pinto88], [Quinn77], [Schultz87], and [Tichy83].

3.3. Ownership

The action plan represents a set of commitments to software process improvement, and
spells out the responsibilities of each party involved. The process of creating the plan
should include as many people as possible. Once the plan has been created, however,
each piece must have one owner. This does not eliminate further involvement by the rest of
the organization; it does mean clear-cut assignment of responsibilities. These respon-
sibilities include updating and revising each part of the plan and reporting status of both the
improvement actions and the plan itself.

34 CMU/SEI-90-TR-24

Key Off Exisiting Strategic Planning Cycle

1. Conduct an assessment.

2. Integrate the assessment results into the existing strategic planning cycle.

3. Conduct a meeting to transfer the assessment and planning results to an

audience of implementors, yielding a tactical action plan.

4. Use the tactical action plan to derive operational action plans on a per-project basis.

Create the Strategic Plan at a Search Conference

1. Conduct an assessment.

2. Convene a search conference in which the assessment results are available as

expert evidence of concerns and solutions, yielding a strategic action plan.

3. Hand results to working groups as input for creating a tactical plan.

4. Create operational plans on a per-project basis guided by the tactical plan.

Create the Strategic Plan in the Steering Committee

1. Conduct an assessment.

2. Convene a software process improvement steering committee to recommend a

strategic action plan to the sponsor and obtain the sponsor's approval.

3. Establish a process group to use the strategic plan to create a tactical plan.

4. Convene a working conference where managers and practitioners review, revise,

and buy in to the strategic and tactical plans.

5. Create operational plans based on guidelines in the tactical plans.

Throw One Away

1. Conduct an assessment.

2. Develop strategic, tactical, and operational plans by any means.

3. Begin implementation of a pilot process improvement on a project.

4. Conduct a review of that implementation by the developers of the original plans,

the current pilot project staff, and the staff of the next project slated for pilot implementation.

5. Use the findings to revise all parts of the action plans; repeat steps 3 and 4 until

there are no further major changes to the action plan.

Figure 3-2: Sequence of Activities for Generating Action Plans

CMU/SEI-90-TR-24 35

The action plan, thus, is not complete until it describes all the actions to be taken, names the
groups or individuals responsible, and includes the schedules for the actions. Figure 3-3
lists the action plan "owners" and their responsibilities. Figure 3-4 diagrams the relationship
of these groups to each other. In the actual plan for an organization, the names of in-
dividuals as well as groups should be listed and kept up to date.

Action Plan Parts

Strategic
Plan

Tactical
Plans

Operational
PlansAction Planners

Executive Sponsor

Steering Committee

Process Group

Working Groups

Projects

X

X

X

X

X

X

X

X

X

On-going Responsibilities

Policy, funding

Strategy, oversight, provide reports to sponsor

Maintain action plan, provide reports to all
involved, orchestrate process improvement
process

 Track, screen, acquire, evaluate new
 technology & processes; develop guidelines
 for their use; consult on their use

Pilot new technology or processes; provide
feedback to working group, process group

Figure 3-3: Action Plan Owners

Project 4Project 3Project 2Project 1 Project n

...........

...........

new
technology
and
processes;
guidelines;
expertise

feedback
 on specific
 improvement
 efforts

Process
Group

Steering
Committee

access to resources

feedback
 on PG
 services &
 reports

expertise on implementing
 change; training & education
 coordination; process
 database; assessment
 facilitation; on-going
 action planning;
 library

information,
status,
feedback
for overall
software
process
improvement
effort

resources,
 strategy,
 oversight

resources, strategy, oversight

information, status, feedback for each
 WG area

feedback

WGWG WG WG1 2 3 n

Figure 3-4: Organizational Architecture for Process Improvement

36 CMU/SEI-90-TR-24

3.4. Action Plans With Multiple Assessments

It is common for an organization to conduct many assessments. Each assessment can
yield its own action plan. These plans can conceivably be disjointed and even contradictory
unless there is a unifying influence applied.

It is the job of the corporate (i.e., highest level) process group to track and harmonize the
action plans that result from multiple assessments, and to resolve contradictions. This effort
may, in fact, provide opportunities for economies of scale and cross-fertilization of ex-
perience. The process group must also keep sponsoring management informed of the total
cost of improvement because the combined cost of all the action plans together may exceed
management’s expectations.

3.5. Action Plans Without Assessment

If an assessment is not possible, perhaps because it lacks high-level sponsorship, the ap-
proach to creating an action plan will need to be modified. The advantage of beginning with
an assessment is that priorities are derived from an organization-wide look at issues. The
risk of undertaking improvement in the absence of this perspective is that decisions are
based on limited information. Planning will, in any case, have its benefits even if it must, of
necessity, involve a smaller piece of the organization.

There are two approaches to creating action plans without an assessment. The first is to
perform, instead of a full-blown formal assessment as discussed in Chapter 2, a "quick and
dirty" evaluation of what works and what doesn’t in the organization, using brainstorming or
some other group technique. The resulting action plan focuses on a few of the most critical
issues, and the time frame for action should be smaller—perhaps a few months instead of
two or three years. Technical working groups would be formed to address each critical is-
sue and to create tactical plans. Specific improvement activity plans (that is, operational
plans) would be created for projects agreeing to test new approaches or technologies.

The second approach is to begin at the tactical level with a working group addressing one or
two issues and creating a tactical plan. This plan could be used as the basis for an improve-
ment activity pilot. The results from the pilot could be used to refine the tactical plan further
and/or to create leverage for establishing additional working groups.

CMU/SEI-90-TR-24 37

4. Describing and Defining the Software Process

Existing processes must be described before they can be well under-
stood, managed, and improved. An organization must then define what
these processes should be before attempting to support them with
software engineering tools and methods; in fact, the definition forms the
requirements for tool and method support. A variety of process descrip-
tion and definition technologies is available.

A process that is not well understood and articulated cannot be managed or improved. Just
as manufacturers must select activities and tools for a particular product line, software or-
ganizations must also define and implement appropriate processes for each major develop-
ment effort. Software, by its nature, is very easy to change. Because software practitioners
are well-educated professionals who readily take independent action, a well-articulated and
understood process is essential to the orderly and predictable operation of a software
development organization.

A well-defined and articulated description is prerequisite to process improvement. As Card
and Berg [Card89] state, "periodic acquisition of improved methods and tools, by itself, does
not ensure continual improvement. To be effective, technology must be integrated into an
underlying process. That integration must be managed explicitly." Increases in quality and
productivity, along with the successful use of technology, depend directly on a well-
articulated and well-understood process.

As an organization’s process becomes mature, the process definition is increasingly critical
because it is used to determine measures for each step in the process, and it is these
measures that will be used to manage and improve the process. A defined process, then,
yields the opportunity to employ a quantitative approach to management. Japanese and
United States manufacturing firms have demonstrated that the quality of a product directly
depends on the quality of the process that produced it.7 In Appendix A, Humphrey describes
relative levels of process sophistication and manageability; attendant effects on productivity
and quality can be expected at each level.

4.1. Describing the Existing Process

Building a process definition for an organization begins with describing what exists. Even-
tually, the definition of what should exist is also created, and replaces the initial description.8

All software development organizations have a process in place for doing their work. This

7For details see Appendix B.

8Recommended reading for those beginning the task of describing or defining software process:
[Humphrey89], Ch. 13, "Defining the Software Process."

38 CMU/SEI-90-TR-24

process is not always documented in adequate detail. Corporate or national standards that
apply may be too abstract for use without further modification; for example, they may re-
quire, as in the case of [IEEE-SQ86], several different types of reviews, but not provide
checklists or agendas. A first step in process improvement, therefore, is to prepare a
detailed written description of the process as it currently is practiced. The process group
and the working groups first describe the existing processes and later define the desired
processes, tune them as needed, and maintain the descriptions.

Any of a number of different methods may be used; one of the simplest, ETVX [Radice85],
is described below. Another straightforward method with tool support is described
in [Kellner89]. Whatever the method, describing the existing process should result in
documentation of how software products are actually developed and maintained in a given
organization.

4.1.1. Documenting the Process: One Approach
One very accessible approach to writing a process description is presented in [Radice85].
Radice considers a process to be made up of software activities, which must be defined. A
defined activity is one which has:

(1) a list of entry criteria that should be satisfied before beginning the tasks, (2) a
set of task descriptions that indicate what is to be accomplished, (3) a validation
procedure to verify the quality of the work items produced by the tasks, and (4) a
checklist of exit criteria that should be satisfied before the activity is viewed as
complete. (p. 83)

Radice calls this the E (Entry Criteria) T (Tasks) V (Validations) X (Exit Criteria) process
architecture. Using ETVX to describe each phase of software activity should result in a
consistent description of software development processes. Gaps—missing activities or a
missing E, T, V, or X for an activity—that appear in the process description indicate where
immediate process improvement may be needed. For example, the exit criteria for module
design may not have been defined or may not match the entry criteria for the next activity.

On the most abstract level, process definition is simply the determination of what stages and
activities will be used by a given software organization. [Radice85] lists the following phases
for a commercial product:

• Requirements and planning

• Product-level design

• Component-level design

• Module-level design

• Code

• Unit test

• Functional verification test

CMU/SEI-90-TR-24 39

• Product verification test

• System verification test

• Package and release

• Early support program

• General availability

E, T, V, and X must be defined for each activity. Organization-wide process definitions
provide general definitions, noting where individual programs and projects must provide
specifics. For example, the general definition of a component design activity might have as
entry criteria the availability of an inspected specification document; as a task, the require-
ment to produce a design document; as validation, a design document inspection; and as
exit criteria, the baseline and configuration control of the inspected document. The details of
how inspections are conducted, including who and how many individuals should attend, the
roles of the attendees, how much is inspected at a time, etc., are left to individual projects.
The particular design method and notation, as well as the document creation and main-
tenance tool, are also left to the individual project.

Standards, templates, and examples are simple and worthwhile complements to the ETVX
documentation. Standards describe required procedures, practices, methods, and tech-
nologies, such as the use of software inspections as peer reviews or a particular Ada com-
piler. Templates are detailed outlines for activity work products (Radice’s "work items").
Templates for component-level designs and for test plans and scripts, for example, en-
courage consistency of format. Templates can be used to enforce standard reporting for-
mats, with some sections required and others optional. Examples are filled-in templates,
preferably actual instances of a work product, such as a test script. Examples give prac-
titioners guidance about style, level of detail, and vocabulary.

The ultimate goal is to create a description of an organization’s entire software engineering
process. This is a long-term, ongoing effort which can take years. More limited efforts can
pay off in the short run while the larger effort continues. For example, it may be useful to
place all intermediate work products—design documents, test plans, and source
code—under configuration control, thus enforcing exit criteria throughout the existing
process. This should lead to increased stability and greater visibility of work products.

Another useful tactic, once configuration management has been established, is to com-
pletely define one phase of the software engineering process, preferably the one most
widely used by project personnel. This is typically the coding phase. Once the process for
one phase is well defined, an interfacing phase—perhaps unit testing or module
design—can be more easily defined.

40 CMU/SEI-90-TR-24

4.2. Defining the Desired Process

When the existing process has been described, the work to define the desired process can
begin. This effort can require extensive resources and is a long-term effort. The process
group must coordinate the concurrent efforts of the working groups to create the definition,
and everyday use of the defined process cannot be expected for some time. This is one
reason why executive sponsorship and the steering committee are so important: a long view
and the resources to support it are essential.

Process group members work with the technical working groups initially to prepare descrip-
tions of process phases, and then, over time, to define activities within process phases to
the desired level of specificity, including the creation and review of standards, templates,
and examples. The process group acts as editor and librarian of the growing collection of
process definition material, ensuring, for example, that exit criteria from one phase or activity
match entry criteria for the next. The process group also coordinates the efforts to tailor a
process definition for a new project. As new projects begin, they draw material from the
process definition library and adapt it. Working group representatives work through the
process group to provide training and consulting for project members who will be using the
new material.

What makes a good process definition? It should be all of the following:

• Broad. It should define the software life cycle. This includes all activities, and
internal and deliverable documents, related standards, and constraints.

• Deep. It should define the process aspects at different levels of abstraction. It
should include all formal and informal connections among tasks, phases, and
work products.

• Flexible. The process definition should be able to describe phases that never
end (such as requirements definition), as well as tasks that have crisp termina-
tions (such as inspections). It should describe flows, exceptions, and con-
straints.

• Practical. The definition should accommodate adaptation. For example, if a
process definition requires that a baselined component be placed under con-
figuration control, it might require projects to decide how baselines are obtained
and how configuration control will occur, to document their decisions, and to
submit these plans for review, perhaps to the configuration control working
group. The result is high-level consistency across projects, and consistency at
a more detailed level within projects.

• Measurable. The process definition should be measurable so that statistical
control of the process can be obtained.

• Auditable. It should be specific—concrete enough for an independent agency
to use in making an objective, repeatable judgment about whether the defined
process has been followed.

• Evolvable. The definition must include a provision for orderly change.

CMU/SEI-90-TR-24 41

There is a growing body of literature about process definition and process modeling.
[Freeman87] treats these subjects extensively, under the name "system development sys-

tem." An SEI curriculum module [Scacchi87] is dedicated to these topics. Readers should
also examine DoD-STD-2167A [2167A] and the IEEE Standard for Software Life Cycle
Processes [IEEE-SLCP89], now available for public review. In addition, the international
workshops on software process contain considerable material on definition; the latest
proceedings is [SoftProcWork89]. Each of these references will mention others. As men-
tioned earlier, Chapter 13, "Defining the Software Process," in [Humphrey89] is recom-
mended for reading prior to beginning a description or definition of an organization’s
process.

4.3. Process Definition and CASE Technology

Until an organization’s software engineering process has been described and at least par-
tially defined, it is premature to evaluate the applicability of a particular method or tool.
Tools and methods are, in effect, instantiations of aspects of the development process.
After the process has been described—and preferably not until it has been
defined—methods and tools can be evaluated based on their fit and contribution to process
improvement. In fact, a process definition can point to the need for a method or tool and not
only help to justify it, but provide detailed requirements for its functionality. (See the discus-
sion in Appendix D for other factors to consider in acquiring new technology, including how it
may fit within the context of organizational culture and software process maturity.)

42 CMU/SEI-90-TR-24

CMU/SEI-90-TR-24 43

5. The Process Database

The process database is a central collection of files containing all critical
information on the process and product aspects of software develop-
ment and maintenance. It is maintained by the process group. Using
simple definitions, the measurement portion of the database should con-
tain a few indicative, useful measures of the products and processes. In
addition to a quantitative database, the process group should maintain a
file of process improvement lessons learned.

The process database is a central collection of files containing all critical information on the
process and product aspects of software development and maintenance. It is maintained by
the process group, which may work with a metrics working group, a defect prevention work-
ing group, and the steering committee to determine what the database should contain and
how the data should be used.

Measurement motivates people to change their behavior—they agree on a target and work
toward it. As progress becomes reflected in the measured results, people make modifica-
tions to improve the outcome; this is why practitioners need to be involved in defining the
measures used.

5.1. Measurement

This section provides introductory material on establishing the measurement portion of a
process database. Further guidance can be found in the following references, ordered from
general to detailed: [Grady87], [Humphrey89], and [Flaherty85].

The measurement files of the process database contain quantitative information about how
effective the process is. This information can be collected for a number of reasons and
used in a number of ways. [Humphrey89] cites the following:

• Understanding. Data may be gathered as part of a study to learn about a par-
ticular item or process.

• Evaluation. The data may be used to determine if a process, product, or ac-
tivity meets acceptance criteria.

• Control. The data may be used to set limits and goals for activities.

• Prediction. The data may be used to develop rate and trend parameters for
project planning.

The ultimate goal of measuring the software process is to reach the point of statistically
verifiable control similar to that available in a manufacturing process.9 Control over a
process is obtained by:

9 [Cho87] explores this analogy at length, focusing primarily on product quality.

44 CMU/SEI-90-TR-24

• Characterizing the process and making it more visible.

• Using simple measures directly related to what needs to be improved.

• Measuring the process as well as the product.

5.1.1. Visibility
Once the software development and maintenance process is defined, it can become
dynamically visible by quantitatively characterizing it at points along the life cycle. A certain
range of each measure is targeted as a reasonable goal, and progress against the goal is
typically posted or announced publicly. Making the process public has the beneficial effect
of making it a team effort [Weinberg71].

5.1.2. Types of Measurement
In general, there are two types of measures: product and process. Product measures
describe the characteristics of each system component being produced or maintained.
Typical product measures are size, cost, complexity, quality (number of defects), and
resources consumed to develop or maintain the component. Process measures describe
aspects of the process used to produce or maintain those components, and are attributable
to the human processes that create the product. Typical process measures are defect
rates, repair rates, and production rates. Broader measures such as labor turnover, learning
curve, communications overhead, and degree of overall adherence to the defined process
also relate to process. In fact, a single measure may apply to both process and product,
depending upon its usage and one’s point of view. Both types of measures may be col-
lected on individual components or across groups of components; when product measures
are aggregated, they often provide information about the process.

5.1.3. Definition of Measures
To be useful, a measure must be clearly defined. Following are the general characteristics
of such a definition:

• It is practical—it can be directly related to the work.

• It is easy to apply, so subjective judgment is not required.

• The same things are treated in the same way.

The experience of those establishing a process database tells us that good definitions re-
quire iterative enhancement. It will be difficult to arrive immediately at the best definition.

Because of the difficulty in adequately defining terms (line of code, defect, documentation
change vs. design change, etc.), experimentation is required. The purpose of the experi-
ments should be to define terms precisely so that they are understood the same way by all
users and can be collected by machine.

Measures that are subjectively weighted, complicated, or removed from the actual software
production process are not likely to be effective. Accordingly, the first task will be to "gain

CMU/SEI-90-TR-24 45

agreement on a set of software measurement criteria which managers feel are meaningful,
reasonable to collect, and can be used to measure progress and predict results"
[Grady87].10

5.1.4. Suggestions
Keep the data simple. Even very simple measures have been shown to be effective. For
example, it may be unnecessary to collect "hours worked" to any decimal points since varia-
tions of up to two times in effort rarely affect measures of the underlying process. (However,
that variation might distort the numerical value of productivity.) Additional examples can be
found in Chapter 9 of [Grady87].

There is an expense to collecting and validating data, but one of the factors that can offset
the expense is turnaround that is quick enough to take advantage of the collected infor-
mation. One must be careful when making claims about quick turnaround, though, because
it takes quite a while to validate and process such data. The quick turnaround—while dif-
ficult to achieve in practice—will enable managers to see value added to the collection over-
head.

Start modestly. Use the tools already available for data collection, presentation, and
storage. For example, one can use a window in a development environment as a means of
collecting information online, more or less in real time, regarding effort and schedule. This
data can be transmitted via electronic mail and placed in a spreadsheet for "first-pass"
validation, consolidation, stripping of the identity of its source, and presentation in tabular
and graphic form. One does not need a sophisticated (read "relational") database in which
to store elementary measures.

Remember that the development of a useful process database is a long-term process that
requires the consensus and feedback of users to refine the definitions, the measures, and
the requirements for raw data collection.

5.2. The Database

The purposes of the process database are these:

• To indicate trends and long-term effects.

• To experiment with definitions in order to arrive at a meaningful set.

• To indicate trouble spots that are evident using (even rudimentary) measures.

• To support a basis for estimates.

10The SEI has recently begun an initiative to provide standard definitions for size (such as source lines of
code), effort (such as person-months), quality (defects), and schedule (elapsed time). This initiative includes
industry, government, and academia.

46 CMU/SEI-90-TR-24

5.3. Defect Prevention

Several process information files are needed to support the defect prevention process
described by [Mays90, Gale90].

• The defect file contains a record of each defect and information such as
originator, description, resolution, disposition, and effort to repair.

• The action item file contains the action items that arise out of a causal an-
alysis of the defects. These items are suggestions for improving the process so
that future defects would not be manifest in the software product.

• The kickoff file contains process descriptions of development phases. A
process description package is printed by selecting the appropriate descriptions
for a specific project and phase from among all those available in the file; this
package is then presented at the meeting that kicks off the phase. The ele-
ments of the process are usually drawn from separate files that collectively
represent the current best thinking regarding that phase.

5.4. Accessibility

Care must be taken never to use database information for personnel or individual project
evaluations. There are many factors that cannot be taken into account by our primitive
measures (for example, the best programmers often get the hardest assignments, so they
may show the lowest productivity). Additionally, if the measures were used for evaluations,
the temptation to manipulate the figures to show performance in a favorable light could
make the data less useful for predictive and problem-solving activities. Thus, the database
could no longer be used for process improvement.

On the other hand, access to composite results is necessary. Managers can better charac-
terize and understand the process for which they are responsible when they can compare it
to the values of central indicators.

Easy access to summary data achieves several objectives:

• It gives the software practitioner and manager some "ownership" without the
concern of custody and maintenance. Although there is some cost to create
the input to the database, easy access is a counterbalancing benefit.

• It gives the manager a free hand to experiment with measures that may be
meaningful to him or her, but are not part of the "canned" suite.

• It allows managers to compare their performance with others in order to under-
stand how they differ and offers them the opportunity to find out why they differ
(for example, a manager might call another project manager that has interesting
numbers).

As an example, Hewlett Packard maintains a central database and regularly distributes a
summary version of the whole database to every project manager for use on his or her per-

CMU/SEI-90-TR-24 47

sonal computer spreadsheet program. There is a suite of stock reports and graphs; in ad-
dition, the manager can use the spreadsheet program to analyze and present the infor-
mation in any manner that is useful. A sophisticated (read "expensive"), distributed, shared,
relational database management system does not seem to be necessary.

5.5. Lessons Learned: Beyond the Database

In addition to a machine-readable database, the process group should capture the history of
the improvement efforts. The group should collect, catalog, and maintain reports and other
artifacts related to attempts to improve the process. In many organizations, these products
are lost when personnel change, and the improvement lessons must be learned all over
again. Records should include: an indication of what went well and what did not go well; a
description of how problems were handled; and suggestions for improving performance on
similar tasks in the future.

Capturing and reviewing lessons learned can be a part of the development life
cycle [SMAP4.3]. The challenge is to make this information available to those who need it,
past the life of a project.

The development of a useful measurement program and process database is a long-term
process in itself. It will require the consensus and feedback of users to refine the definitions,
the measures, and the requirements for raw data collection.

48 CMU/SEI-90-TR-24

CMU/SEI-90-TR-24 49

Part II — Ongoing Activities of the Process
Group

50 CMU/SEI-90-TR-24

CMU/SEI-90-TR-24 51

6. Beginning Continuous Improvement

The process of introducing an improvement includes selecting a can-
didate technology, tailoring the technology and the training for its use,
and using the technology on a pilot basis. Feedback should be col-
lected and future plans modified in light of the pilot experience.

The activities discussed thus far constitute the beginning of the process group’s mission:
continuous process improvement. These activities can be compared to the blueprint and
frame of a house; now the building must be completed, occupied, and maintained.

The process group and its partners—the steering committee, the working groups, and the
projects themselves—will have steady-state, ongoing jobs in accomplishing process im-
provement.

One key long-term activity is the installation, over and over again, of new procedures and
technology that support process improvement. These installations should begin with a pilot
(prototype) installation—a controlled experiment. Pilots are essential when an organization
has no experience with a technology, or when the technology will be applied in a new
domain or with inexperienced staff. This is true even if the technology seems to be mature,
as with software inspections, or even if the organization has excellent in-house resources,
such as a technical working group with some experience in cost estimation. If a technology
is new to an organization, it cannot be considered mature in that context. Appendix D
presents an extended discussion of this phenomenon. This chapter describes some con-
siderations for executing a pilot effort.

6.1. Introducing the Change

Pilots are often initiated in response to activities of a working group. For example, the as-
sessment and resulting action plan might identify the need for a new configuration control
system. The working group would spend time investigating possible systems and choose
the most likely one; and a project would be identified as a candidate to try the new con-
figuration control system. The sponsor, the steering committee, and some members of the
project targeted for the new technology then agree to proceed. To provide information to
those involved, the process group leader organizes a briefing session in cooperation with a
representative of the technical working group for the technology in question. The following
people should be included: anyone who may be affected by the change; all members of the
candidate project who can be identified as strongly supporting or opposing the change; and
representatives from internal training and education organizations. If standards or quality
assurance practices will change, representatives of those groups should also be invited.

At the briefing, information about the particular software technology being considered for
use should be presented by a person who has experience in helping similar organizations
adopt that technology. This might be a member of the technical working group that has

52 CMU/SEI-90-TR-24

been studying the technology; an in-house expert can certainly save time and expense, and
has the added advantage of familiarity with the technical context and application domain of
the target. If an in-house expert is not available, this is the time to bring in an outside con-
sultant. The technical working group can probably recommend candidates; they may al-
ready have established consulting relationships with particular experts.

At the briefing, the expert selected should objectively discuss the pros and cons of the par-
ticular technology. He or she should discuss both the technology and the process of putting
it into place. Time should be allowed for attendees to ask questions and express concerns.
The briefing should address the following:

1. What problem is the technology intended to alleviate?

2. How does the technology solve the problem?

3. How well does the technology solve the problem? What are the benefits of
the technology, both qualitative and quantitative?

4. What are the costs; for example, product cost, installation, training, time away
from the job, and start-up costs?

5. Where else has the technology been used, both inside and outside this or-
ganization? Are there sources of information on use in comparable contexts?

6. Will the technology require revision of the current technological environment?
Areas to be considered include: standards; other technology such as software
tools or hardware; databases; and schedule and cost-estimation procedures.

7. Will the technology require revision of the current organizational environment?
Areas to be considered include: reward systems; job structure; responsibilities
and authority; policy; and budgeting.

8. How similar or different is this technology from what is in place now? Is train-
ing required? How much? Will it need tailoring? Will people be given the
time necessary for classes?

9. Is this a good time to install new technology? Can it be used immediately?
How does the technology relate to development and maintenance schedules?
Is there enough lead time for people to try out the new technology prior to
using it in production?

10. Can the technology be tailored? Will tailoring be necessary? If so, what will it
cost? Are resources available from the working group, vendor, or other
source?

11. What are other possible consequences of using the technology?

Many of these questions may be identified, but not answered, during this meeting. A list of
questions not answered can be used as a guide for further investigation.

Finally, the pilot test site for both the technology and the implementation process should be
confirmed. This site should be representative of the projects that are likely to use the new
technology, so that the pilot installation serves as an adequate test. To be considered typi-

CMU/SEI-90-TR-24 53

cal, it should be neither too simple nor too complex, so that the results of the technology
installation are not attributed to the peculiar nature of the pilot. The pilot should have an
appropriate point in its schedule for beginning the implementation process; and, most impor-
tant, the pilot project members should be willing and able to collaborate with the process
group in the implementation effort.

6.2. Pilot Procedures

The installation of technology must be carefully planned. Prerequisites to beginning actual
use of the technology are listed below, in the order in which they should occur.

1. Obtain the technology. If a tool or method must be purchased, the process
group, collaborating with the pilot project and a working group, should work
with suppliers to select and obtain it. Suppliers may be in-house tool builders,
projects from other divisions, or outside sources such as vendors and govern-
ment repositories.

2. Create in-house expertise. Early use of the technology should be limited to
process group members, members of the technical working group, and pilot
project engineers who will help draft guidelines for use. (Broader use should
follow preparation of the guidelines, which in turn is an outcome of the piloting
process.) If skills and knowledge needed for preparing the guidelines for use
are not available, training should be obtained for those involved in the task.
Training should be specific to the technology coming in. For example, a
general course on configuration control is good background if the technology
in question is a tool to support this. However, such a course may need to be
supplemented by tool-specific training before meaningful guidelines can be
written. This specific training is absolutely essential, and, if omitted, will
seriously jeopardize the success of the prototype effort. Lack of training for
key people inside the organization can result in misapplication and underuse
of technology; it can unnecessarily extend the learning curve for effective use.

3. Draft guidelines for using the technology. Ultimately, all pilot project en-
gineers must be able to use the new technology. Training may not be neces-
sary for each engineer, but all must have guidelines for use. If example
guidelines are available from the technology supplier, the technical working
group, aided by the process group and coordinating with the training and
education function, can work to tailor these for trial use. Guidelines should
specify procedures for each category of technology user, including managers
who may use the new technology indirectly.

54 CMU/SEI-90-TR-24

4. Tailor the training to the needs of project members. If training is neces-
sary for the pilot project engineers, it should be provided in a form compatible
with the guidelines. Students should not spend valuable class time attempting
to reconcile differences between training materials and guidelines. Since
training, if needed, is the last step prior to "live" use of the technology by all
pilot engineers, it should result in skills and knowledge that can be applied
immediately upon completion of the course. Tailoring the training materials so
that they reflect the vocabulary and technical environment of the pilot project
helps ensure immediate applicability of skills mastered in the course. Tailoring
should be done jointly by the working group and the training and education
function; the process group should be kept informed.

5. Prepare the technology for use. Perform any work needed prior to allowing
broad access to the technology. This may require broader installation than
during the development of guidelines and tailoring of training. If the configura-
tion or performance of the technology can be tuned, that should be completed
before new users become involved.

6. Provide the training. In the long run it pays to train all potential users of the
new technology. One misapplication can cost far more than a few staff hours
of training. It is best to train each team together, and to train them im-
mediately before they will begin to apply the technology; if more than two
weeks elapse between the training course and application, performance will
be seriously degraded. The process group leader, the sponsor, and the pilot
project manager should begin the training session with information on the pilot
objectives and background on the technology selection process. Trainees
should be encouraged to provide feedback on the training, the guidelines (dis-
tributed as part of the training materials), and the technology itself. Training
sessions thus offer management an opportunity to explain objectives and
demonstrate commitment, and give trainees the opportunity to "buy in" and/or
discuss problems with those who are in a position to solve them.

7. Begin using the technology. During the first weeks of use, the process
group and the technical working group should be available to consult with the
new users. Some initial difficulties are to be expected; the process group
should note these and correct the guidelines or training, or tune the technol-
ogy. They should be careful to differentiate problems of the technology from
problems of use.

8. Provide ongoing support. Important means for providing ongoing support in-
clude feedback mechanisms such as hot lines, ongoing consulting, user group
meetings, and systematic data gathering to determine how well the new tech-
nology is being used and how the customers are doing.

6.3. Beyond Pilots to Routine Use

After the pilot project has used the new technology for about six weeks, and again after a
few months, the users and process group make an evaluation. (The time periods for check-
ups depend on the nature of the technology, the size of the pilot project, etc.) The process
group and the working group members who have been involved should summarize the
results and confer with the steering committee about the advisability of attempting another

CMU/SEI-90-TR-24 55

pilot. Results should be reviewed in terms of both the new technology and the process for
putting it into place. It is most helpful if quantitative data can be obtained to indicate the
effect of the new technology, but other forms of feedback—hot line records, memos, trouble
reports, notes from focus groups, minutes of user group meetings, or customer complaints
that can be traced to the new technology—can be useful as well. After the need for refine-
ment has leveled off and key objectives have been met, more pilots can be initiated.

Usually a minimum of three pilots is advised before attempting organization-wide use.
Completion of the piloting process is indicated when installation of the new technology can
be estimated and scheduled predictably. When the experience in one pilot differs sig-
nificantly from that of another, more pilots are required.

56 CMU/SEI-90-TR-24

CMU/SEI-90-TR-24 57

7. Mechanisms for Information Transfer and
Implementing Change

Many mechanisms are available to aid the implementation of tech-
nological change. The most common one, information transfer, is a
good starting point but is insufficient by itself. For change to last, or-
ganizations need additional mechanisms to assist in the routine use of
new technologies.

There are many mechanisms that support the transfer of technological information and the
implementation of technological change. Most are so common that they are taken for
granted. For example, some organizations establish a policy that each professional
employee will have several days of continuing education per year. Some routinely develop
and maintain standards and procedures to ensure consistent engineering practice. Others
sponsor university research and go on to incorporate the resulting technology. And there
are many other approaches in everyday use. Two fundamental problems often limit the
success of information transfer and change activities: mechanisms are not purposefully
combined in the context of a strategy for implementing a particular objective, and one or two
mechanisms are expected to do the work of several.

The success of process improvement depends on the adroit application of appropriate
mechanisms. In this chapter, we will discuss mechanisms for both the transfer of tech-
nological information and the implementation of technological change. We will also discuss
strategies for using these mechanisms.

7.1. Information Transfer Mechanisms

Information transfer mechanisms are those that serve to disseminate information or
knowledge about a particular technology. These mechanisms, summarized in Figure 7-1,
allow prospective users of a technology to proceed through the first four stages of commit-
ment to organizational change [Conner82]: contact with new technology, awareness of its
implications in general, understanding of how it might change an individual’s particular en-
vironment, and positive perception of the possibility of using it. Typically, these information
transfer mechanisms present a technology in a generic or unadapted state. People par-
ticipating in conferences or seminars, for example, must hypothetically "map" the technology
to their specific context. These mechanisms might provide, for example, the opportunity to
gain an overview of object-oriented software design or cost-estimation models for software
projects; but other mechanisms, such as those discussed in the next section, are prereq-
uisite to actual use.

Organizations which employ professional engineers or which engage in research and
development work often assume that it is sufficient to make mechanisms available, such as
those listed in Figure 7-1. This laissez-faire approach to information transfer is effective only
to the degree that employees take advantage of the opportunities provided.

58 CMU/SEI-90-TR-24

B
rie

fin
gs

E
xe

cu
tiv

e
S

em
in

ar
s

Li
br

ar
ie

s
or

 E
xt

er
na

l
Li

te
ra

tu
re

C
om

pa
ny

 N
ew

sp
ap

er
s

In
te

rn
al

 &
 E

xt
er

na
l

S
em

in
ar

s
&

C
on

fe
re

nc
es

P
ee

rs

C
on

su
lta

nt
s

V
en

de
r

D
em

os

U
se

r
N

ew
sl

et
te

rs
 o

r
E

le
ct

ro
ni

c
B

ul
le

tin
 B

oa
rd

s

B
ro

w
n

B
ag

 L
un

ch
es

S
po

ns
or

ed
 R

es
ea

rc
h

R
ep

or
ts

Mechanism

Audience C
om

pa
ny

 J
ou

rn
al

s

Upper
Management

Middle
Management

First-line
Supervisors &

Engineers
X X X X X X X X X

X X X X XX X X

X X X X X X X XX

Figure 7-1: Mechanisms for Information Transfer

An organization may wish to proceed more deliberately and systematically, as in the case of
setting goals to move toward increasing levels of process maturity. If this is true, it must
have a planned and purposeful dissemination of information throughout the organization.

Once the assessment and action planning have identified areas for improvement, including
technological needs, the organization needs something analogous to an internal marketing
campaign. Market segments (such as levels of management, potential sponsors, and
various communities of engineers) can be targeted and, after research, appropriate infor-
mation transfer mechanisms chosen for each. The process group, the technical working
groups, and the steering committee should plan this program and cooperate in implementing
it. A specific overall goal must drive the strategy; for example, moving up one full level of
the process maturity framework within 24 months.

CMU/SEI-90-TR-24 59

STRATEGY FOR EXECUTIVE SPONSORS: Analyze opportunities to make contact with senior executives. Lay out a systematic
"campaign" to provide them with information on the relevant technology (including its relationship to business conditions and
information on what other organizations are doing) at the right times.

Tactics might include:

1) Briefing potential sponsors or getting consultants to do so, and then having the sponsors brief or meet with peers.

2) Getting a place on the agenda of annual executive seminars, or internal technical conferences where senior executives may
appear, for an appropriate level speaker who can discuss both the strategy and candidate technologies.

3) Getting coverage of candidate technologies in the company newspaper; providing writers with appropriate material as needed.

4) Getting on the agenda of meetings of standing committees, e.g. corporate quality committees or task forces, or software
technology steering groups, to discuss strategy and candidate technologies.

5) Getting a task force set up to provide input on the strategy.

6) Lobbying to have executives set policy for managers and engineers to attend relevant outside training and conferences
addressing the technology areas identified.

OBJECTIVE: Create awareness of technology that can support software process improvement resulting in a Level 3 by a
self-assessment in 18 months.

OVERALL STATEGY: Determine candidate technologies. Identify potential sponsors and collaborators for meeting this objective.
Prepare a schedule of opportunities to provide sponsors and collaborators with exposure to these technologies.

STRATEGY FOR MANAGERS: Analyze opportunities to make contact with middle managers and first-line supervisors. Plan a system-
atic "campaign" to provide them with information on the relevant technology (including information on what other organizations are
doing, the connection to business conditions, and resource requirements) in a timely way.

Tactics might include:

1) Briefing potential sponsors individually or in standing committees or organizational groupings, and then having them brief their peers.

2) Requesting the technical library or its equivalent to subscribe to journals and then having them periodically circulate tables of contents
 to a distribution list you have created. Circulating research reports to the same list.

3) Getting coverage in the company newspaper; providing writers with material appropriate to the interests and concerns of managers.

4) Getting knowledgeable sponsors or consultants to appear at internal management seminars or conferences to discuss the objectives
and candidate technologies.

5) Having vendors conduct special management demonstrations of products.

6) Running focus groups with managers to bring concerns to the surface, gather ideas, issues.

7) Suggesting that managers attend certain outside conferences or training workshops, and/or have their people attend these.

STRATEGY FOR COLLABORATORS: Analyze opportunities to provide information to and gather ideas from engineers who
may use or help implement the new technologies. Use these same occasions to identify "opinion leaders", potential process group
members, potential working group leaders and members, special needs, and internal experts in the technology areas.

Tactics might include:

1) Having the technical library or its equivalent subscribe to appropriate journals; making a distribution list and then having the library
 circulate tables of contents periodically.

2) Getting coverage in the company newspaper; provide material targeted to the engineers who may use a new technology.

3) Providing experts from outside and inside the organization to present talks at internal seminars, colloquia, and brown bag lunches.

4) Running focus groups, inviting both key advocates and skeptics, to solicit ideas, concerns.

5) Arranging for demonstrations by vendors of processes, methods, and tools that are candidate technologies.

6) Setting up electronic bulletin boards or newsletters providing news of and ideas about candidate technologies, and also information
on local experts and users, sources of reference material, and descriptions of conferences and training workshops.

Figure 7-2: Example of Strategy for Software Process Improvement

60 CMU/SEI-90-TR-24

The specifics of the strategy will vary widely depending on the organization. A strawman
strategy for process improvement within a particular division of a large corporation is il-
lustrated in Figure 7-2. The major difference between this strategy and a more usual
technology-driven approach to information transfer is simply that the proposed strategy uses
ordinary mechanisms very systematically with the goal of meeting a focused objective with a
far-reaching effect.

7.2. Mechanisms for Implementing Technological Change

Mechanisms for implementing change are those that support the processes of adapting, in-
stalling, and routinely using a new technology. According to [Conner82], the next four
stages of commitment to change involve beginning and ongoing use of a new technology;
he labels these installation, adoption, institutionalization, and internalization. Installation is
self-explanatory. Although pilot efforts are not discussed per se, the definition of adoption
does imply the need for a shakedown period. Institutionalization is defined as broad and
routine use across the whole organization (which takes an extended period of time to
achieve). Internalization is defined as the stage where the change has been incorporated,
not just into job performance, but also into the personal values of employees. Internalization
of the need for and underlying principles of process improvement is probably a desirable
goal; that degree of commitment may not apply to a particular implementation because
many different technologies can support the same principles.

Most of the day-to-day work of the process group and the working groups has to do with
implementing change; the groups use many of the mechanisms listed in Figure 7-3, such as
consulting, planning and implementing pilots, screening and acquiring specific tools, revising
standards, suggesting policy changes, arranging apprenticeships, running hot lines, and
editing newsletters. The essential difference between these mechanisms and information
transfer mechanisms is that the latter deal with information about generic technology, and
the former deal with adapting and using technologies in a very specific context.

There are many variations on the mechanisms listed in Figure 7-3 and many additional
mechanisms that can be used. Good sources of ideas are [Przybylinski88] and [Morton83],
both of which document the experience and thinking of engineers and consultants actively
working on software engineering technology transfer issues.

7.3. Applying Both Types of Mechanisms

Whether a change effort involves a major change such as beginning an improvement effort,
or a particular software improvement activity such as software inspections, its effectiveness
depends upon careful planning and awareness of available, applicable technology. The
process group, with the help especially of the working groups, must keep information about
potentially useful technology "in the air." Drawing attention to available technology long be-
fore any specific application of it is contemplated can reduce the effort involved in justifying
action planning for using it or introducing it in a pilot. These efforts help educate potential
sponsors and create a well-informed and interested constituency.

CMU/SEI-90-TR-24 61

In
te

rn
al

 o
r

E
xt

er
na

l
C

on
su

lti
ng

P
ilo

t U
se

O
n

th
e

jo
b,

 S
ta

nd
ar

d
or

C
us

to
m

 T
ra

in
in

g

T
oo

ls

F
u

n
d

in
g

S
ta

nd
ar

ds

P
ol

ic
y

R
ev

is
io

n

N
ew

 o
r

R
ev

is
ed

P
ro

ce
du

re
s

A
p

p
re

n
tic

e
sh

ip

H
ot

 li
ne

s

U
se

r
N

ew
sl

et
te

rs
 o

r
E

le
ct

ro
ni

c
B

ul
le

tin
 B

oa
rd

s

Mechanism

Audience

Upper
Management

Middle
Management

X

X

X

X

X X X

X

X

X

X

X

X

X

X XX X

X

First-line
Supervisors &

Engineers

Figure 7-3: Mechanisms for Implementing Technological Change

To accomplish this part of their process improvement work, the process group and the tech-
nical working groups must keep themselves informed about current software engineering
technology. They do this by joining professional societies, reading the professional litera-
ture, attending conferences, and maintaining contact with internal and external peers, ex-
perts, and vendors. They filter information from technology producers and advocates, con-
tinually attempting to find the best match between the available technology and the needs of
their organization. And they use their knowledge of software engineering technology and of
change and information transfer mechanisms to orchestrate the best combination of ac-
tivities in support of their organization’s improvement goals.

62 CMU/SEI-90-TR-24

CMU/SEI-90-TR-24 63

8. Process Consultation

The process group spends a significant proportion of its time coaching
others and problem solving, while being alert to examples of best prac-
tices. This consulting and broad awareness of the quality of particular
efforts is indispensable for the success of the overall process improve-
ment program.

As the focal point for process improvements, the process group spends a significant propor-
tion of its resources meeting with those whom it serves. The group’s consulting activities
include:

• Helping to set realistic expectations for improvement activity results.

• Tailoring process priorities, definitions, standards, training, and other process
materials.

• Suggesting methods for improving a specific process if a working group has not
already done so.

• Analyzing process measurement data.

• Facilitating improvement planning meetings and activities.

• Demonstrating improvement technology. (For example, serving as a moderator
for inspections until a project can develop its own inspection moderators.)

• Referring groups with similar interests to each other so that they can help each
other.

Process group members must have or develop good consulting skills; they need the ability
to listen and clarify, and to collaborate in problem solving with those who seek their help. If
process group members have access to training or expert advice (especially in the form of
"shadow" consulting) in this area, they should take advantage of it.

In the organization development (OD) community within management science, there is con-
siderable emphasis on systems—in the sense of an organization being a system—and on
engaging the entire system in any change processes. The thinking of modern OD consul-
tants thus is quite compatible with process improvement. Process group members teaming
with OD consultants should expect that there will be much value in such an arrangement;
but the OD consultant may need as much indoctrination in software technology and culture
as the process group members do in OD skills and practice.

An emerging source of process consultation experience and expertise is the community of
augmentation groups.11 As part of this community, process group members are able to

11Douglas Engelbart at the Conference on Computer Support for Cooperative Work, Portland, Oregon, Sep-
tember 27, 1988, suggested this term; his augmentation groups are roughly equivalent to process groups and
are not limited to the software industry.

64 CMU/SEI-90-TR-24

share experiences across disciplines and organizations. Those involved in software en-
gineering process improvement could learn from other process improvement fields (e.g.,
dentistry, nursing, education, printing, VLSI design and manufacture, and flexible manufac-
turing). This may result in the development of tools that aid process improvement; for ex-
ample, structured ways to set expectations, assess needs and create improvement plans,
manage resistance, and reuse improvement experience (by sharing).

CMU/SEI-90-TR-24 65

Part III — Membership and Placement

66 CMU/SEI-90-TR-24

CMU/SEI-90-TR-24 67

9. Process Group Membership

Process group members should collectively have experience from
throughout the software life cycle. They should have experience with
multiple frames of reference, and their backgrounds should complement
each other. Membership is usually (a) full-time, (b) for a fixed period of
time, and (c) recommended as a condition of promotion to a senior posi-
tion.

Members of the process group are advocates for improvement. They are software profes-
sionals assigned, generally full time, to help the organization increase the maturity of its
software process. Members should be carefully selected with the goal of balancing the ex-
perience and educational background of the group as a whole. Suggested selection criteria
(see below) should be tempered by an awareness of the technical and social characteristics
and corporate culture of the organization that the process group will be supporting.

The process group works with sponsors (executive management), a steering committee
(line and program managers), working groups (usually senior practitioners), and project
staff. The group works with domains such as systems engineering, marketing, field support
and maintenance, and training. Process group members are boundary spanners (see Ap-
pendix D) who bridge layers of organization, function, structure, culture, discipline, and com-
peting interests. They translate the terms of one group into the terms of the other.

9.1. Selecting the Process Group Leader

The sponsor, with the advice of the primary advocate for the process group or the steering
committee, selects the process group leader. The selection should be endorsed by key
members of technical staff, especially influential members of working groups and key mem-
bers of management. The process group leader must be an acknowledged technical leader,
with these characteristics:

• Extensive experience in or knowledge of the software process.

• Experience advocating improved software development processes, methods,
and tools—that is, improved quality and productivity.

• Experience in management or project leadership.

• Knowledge of the software development environment.

Candidates for process group leadership may be found among senior technical staff who
have lobbied for improvements within their software projects. If working groups or other
standing technical committees exist, these are good sources of candidates. The quality and
appropriateness of the choice of process group leader will clearly indicate the degree of
management commitment to software engineering process improvement.

68 CMU/SEI-90-TR-24

9.2. Selecting the Process Group Members

Working with the sponsor and the steering committee, the process group leader then helps
to select the other members.

Each process group member should meet this fundamental set of qualifications:

• Be a regular employee of the organization, with experience within the software
projects that will be served by the process group.

• Have application domain expertise.

• Have a basic understanding of the software development process.

• Have knowledge of local software development methods, tools, and practices.

The experience of process group members should be in keeping with the standard of excel-
lence for software practitioners in the organization overall.

Experience in a process group or its equivalent is extremely desirable but very rare. Ex-
perience in planning for and installing new software methods and tools is also very helpful
and more common. The important principle underlying the types of experience is that
process group members should have worked in several different contexts and have ex-
perience with multiple frames of reference (see Appendix D).

In addition, process group members need consulting skills and strong oral and written com-
munication skills. They must be able to communicate effectively with peers and superiors,
and must have a reputation for productive work relationships with both. An open mind is
essential, as group members must be able to rapidly understand and appreciate many dif-
ferent technical and organizational contexts.

The composite background of the process group must be considered. The group should
have experience that supports objectivity about the organization’s technical environment,
culture, management style, and reward systems. This experience includes:

• Work on other software development projects.

• Work in other companies or government organizations.

• Experience in a variety of software development or support/staff positions, for
example, in testing, design, and product assurance (rather than in just one of
these).

• Experience with other target and host computers, as well as other software
development tools and environments.

• Use of other software development processes.

• Work in other application domains.

• Attendance at professional society conferences and workshops.

CMU/SEI-90-TR-24 69

A process group having members experienced in software design, testing, management,
tools, maintenance, proposal preparation, and quality assurance will be able to work credibly
with the steering committee, a range of working groups, and other software practitioners.

The process group is also a good place to use experienced, very senior people who have
held top management positions. These people have accumulated many lessons of value to
their organizations; and if they are willing to do engineering work, they offer a good foun-
dation on which the process group can build. Their understanding of corporate culture and
management style and their broad base of personal contacts and alliances can be par-
ticularly useful.

One pitfall in selecting process group members is a tendency to place people in a process
group who are not successful elsewhere. This would be a clear signal of management’s
ambivalence about the importance of the process group. Competition for people with the
characteristics needed for process group membership is to be expected. The advantages of
a rotation through the process group should be presented in response to concern about use
of valuable staff members in the process group (see Section 9.4).

9.3. Length of Membership

Tenure of two to three years is recommended for process group members. Membership
should be staggered, allowing a month or two of overlap as members are replaced. Ideally,
process group members should come from and return to line organizations; i.e., organiza-
tions building or revising software.

9.4. Advantages of Membership

The organization gains an advantage when key technical staff join a process group: the
central role of the group allows great leverage of valuable talent. For members of the
process group, the experience offers exposure to a broad collection of line organizations,
management groups, business areas, and software development processes and practices.

The work of the process group work requires members to exercise communication skills in
preparing and refining plans and briefings. Group members develop leadership ability as
they work in cooperation with peers and management. Because of this, process group
members may become qualified for promotion to management in a short time.

The process group also provides excellent experience for tool builders and computing sys-
tem environment staff. Environments and tools become more important as an
organization’s software process becomes more refined and predictable, that is, more ma-
ture. Work with a range of projects and software development processes gives group mem-
bers prerequisite experience for effective tool and environment design and support.

70 CMU/SEI-90-TR-24

CMU/SEI-90-TR-24 71

10. Placing the Process Group in the Organization

The process group must be located where it can honor its working
relationships, foster collaboration among the various groups it supports,
and help integrate the many aspects of an overall improvement effort.
The process group works at multiple levels in the organization; its posi-
tion and scope of influence are important considerations.

The actual placement of the process group in the formal organization chart will depend on
the particular organization. The first rule of placement is this: the process group must be
located where it can honor its working relationships. In some organizations, the process
group reports to the director of engineering and is part of the engineering staff organization
that also manages standards, computing facilities, and advanced development. In others,
the process group is part of a large software engineering tools development effort which
also serves the broad software engineering community within the organization. In still
others, the process group reports to the manager of software development for a particular
product line. Wherever it is, the group must be able to:

• Work with managers at multiple levels.

• Work with both staff and line organizations.

• Work across project boundaries.

The process group, steering committee, and working groups are an organizational coalition
for process improvement. Viewed in terms of ordinary organizational structures, however,
this coalition is a collection of task forces, a management committee, and a relatively low-
level staff group. It is, in effect, a largely informal parallel organization [Stein80]; and like
most informal organizational entities, it is at risk because it is outside direct product-
producing activities. Recognizing the importance of groups to the competitiveness of the or-
ganizations they serve, Kanter [Kanter83] suggests the following solution:

The idea behind having a second, or parallel, organization alongside routine
operations only makes explicit what is already implicit in an integrative, innovating
company: the capacity to work together cooperatively regardless of field or level to
tackle the unknown, the uncertain. In a formal, explicit parallel organization, this is
not left to happenstance but is guided—managed—to get the best results for both
the company and the people involved. (p. 359)

Many scenarios are possible for having a parallel organization for process improvement.
One used by Westinghouse suggests a steering committee reporting to a group vice presi-
dent in charge of a product line, the process group’s administrative core reporting to the
manager in charge of software engineering standards and tools, and the working groups
reporting to the steering committee. This steering committee meets monthly with the work-
ing group, and monthly alone. Placing the process group in a matrix organization is a spe-
cial case; a proposal for this follows.

72 CMU/SEI-90-TR-24

10.1. Special Considerations in a Matrix Organization

A matrix organization is one in which most practitioners have two supervisors: a product or
project manager and a resource manager. Product or project management (referred to here
also as program management) is the function responsible for the cost, schedule, and
delivered product. Resource management is the function responsible for the development;
in software, this includes analysis, design, programming, and testing. Such an arrangement
is depicted in Figure 10-1.

The
Common
Superior

Manager
Resource

1

Manager
Resource

2

Manager
Resource

3

Manager
Resource

4

Manager
Business

A

Manager
Business

B

Manager
Business

C

Manager
Business

D

Resource 1
Manager for
Business A

Resource 1
Manager for
Business B

Resource 1
Manager for
Business C

Resource 1
Manager for
Business D

Resource 2
Manager for
Business A

Resource 3
Manager for
Business A

Resource 4
Manager for
Business A

Resource 2
Manager for
Business B

Resource 3
Manager for
Business B

Resource 4
Manager for
Business B

Resource 2
Manager for
Business C

Resource 3
Manager for
Business C

Resource 4
Manager for
Business C

Resource 2
Manager for
Business D

Resource 3
Manager for
Business D

Resource 4
Manager for
Business D

SEPG

SEPG

SEPG

SEPG

SEPG

Figure 10-1: Placement in a Typical Matrix Organization

Adapted from [Janger79].

CMU/SEI-90-TR-24 73

There is a special challenge in placing a process group where it will be of greatest value to
the most people. Should it be in the program office, where the final responsibility for quality
rests, or in the resource office, which covers all software developers, not just those on cer-
tain projects or products?

Typically, resource managers have small operating budgets to cover their internal overhead
functions; they receive the bulk of funding by "selling" resources to the program offices. Ac-
cordingly, it is the program offices that have most of the funds in a matrix organization. In
addition to the preponderance of funds, the final responsibility for the quality of the finished
product rests with the program office. Therefore, the program office would be a natural
place to house the process group but for a single objection: the program office is respon-
sible for just one program, not all programs. Improvement should be attempted
corporate-wide—in all programs—and the experience across programs shared for the com-
mon good. Improvement gains in only one program are lost after the program is completed;
for improvement to become institutionalized, there needs to be a function that continuously
represents the collective experiences of numerous programs and lives longer than and
across all of them.

In the search for the proper place, we must also consider a function to which both program
managers and resource managers report—the common superior. Typically this function
does not make decisions but is more judicial in character, arbitrating interactions among the
competing needs of program and resource managers [Janger79]. Organizations often keep
the "common boss" budget low. This assures that studies are done and decisions are made
by those who have to live with the consequences, i.e., the operating units themselves.

There is the very real risk that placing a process group in a corporate staff office may lead to
the perception, particularly by program offices, that it will not stay strongly rooted in day-to-
day realities. On the other hand, such corporate-level placement indicates upper
management’s strong commitment by providing high visibility.

One effective arrangement (illustrated in Figure 10-1) is to have a small corporate staff office
whose tasks are to: (1) ensure program-level compliance with a corporate mandate that all
programs have an improvement program and (2) provide a central means to collect and
disseminate improvement history. Under this arrangement, every program has a process
group to manage its improvement effort. Part of the program-level improvement program
can be administered by the resource office (e.g., basic training), but the funds and respon-
sibility come from the program office. The program-level process group could obtain some
of its human resources from a pool administered centrally by the corporate process group;
this would ensure that experienced members were available.

Having a local process group in every program allows program-specific priorities to be
directly addressed and funding directly justified. This implies that each program would have
a maturity level somewhat independent of other programs. The corporate goal would be to
increase process maturity across programs, with every program required to set and fund its
maturity level goals during each planning cycle. So in addition to the usual indicators of

74 CMU/SEI-90-TR-24

program success, such as cost and schedule, program offices would also be held respon-
sible for progress on their process improvement plan.

CMU/SEI-90-TR-24 75

Conclusion: A Final Word from the Authors

The quality of the software product is governed by the quality of the process used to develop
it. Improving quality may be the most difficult task we undertake as professionals. It takes
tremendous energy to counter our own and others’ resistance, to establish and sustain high
standards, and to inspire others to improve the way they conduct their daily professional
lives. As difficult as this task is, it seems clear that approaching it in an organized, sys-
tematic manner with the help of management (sponsors, members of the steering com-
mittee, and managers of pilot projects) and colleagues (members of the technical working
groups, practitioners, and people from other departments and disciplines) offers the best
hope of success.

Process group members can look to each other as a source of energy for this demanding
task, and they can look to the growing body of process groups and other improvement
groups that are emerging. Process groups can also look to the considerable literature,
some of which is summarized or cited in the following appendices, for information and
guidance. While the road to improvement is a difficult one—requiring, as Deming counsels,
constancy of purpose—it is an increasingly populated one, as more and more individuals
and organizations recognize that working on quality is not optional but fundamental to a vi-
able future.

The job of the process group is to create and communicate the vision of a preferred future.
The very act of creating a vision requires considerable energy. And to hold it out for all to
see, criticize, and claim as their own requires even more. What makes it worth the effort is
seeing improvement actually take place. We hope that the SEPG Guide helps you make
improvement happen, and we wish you well on your journey toward that end.

76 CMU/SEI-90-TR-24

CMU/SEI-90-TR-24 77

Acknowledgements

In developing the SEPG Guide, we have been educated and positively influenced by many
people.

We thank Watts Humphrey, director of the Software Process Program at the SEI, an au-
thority on software engineering process improvement and a persuasive advocate of process
groups, whose idea it was to write the SEPG Guide. Watts supported us with ideas,
guidance, and resources. We also thank Dick Martin, director of the SEI Technology Tran-
sition Program, and Cecil Martin, manager of Technology Applications, for their understand-
ing of the importance of process groups to software engineering technology transfer, and
their provision of resources to support our work.

We are grateful to Dave Card, former SEI resident affiliate from Computer Sciences Cor-
poration (CSC) and now director of Software Process and Measurement for CSC’s System
Sciences Division, for writing Appendix B, "The Quality Movement and Software Process
Improvement," and to Kevin Kendryna, former SEI resident affiliate from the Naval Undersea
Warfare Engineering Station (NUWES) and now a TQM trainer there, for his research and
ideas on action plans for Chapter 3 and Appendix F.

We are grateful to our colleagues: Rodger Blair provided steady encouragement and
thorough review; John Maher gave thoughtful review of our work, tutored us in organization
change theory and practice, and introduced us to Marvin Weisbord’s work and to ODR Inc.’s
Managing Technological Change; Don O’Neill improved our understanding of some essen-
tial principles of software management, provided the architecture of process improvement,
and encouraged us to freely adapt his work in [ONeill80]. We also thank Jim Withey for his
thoughts on process improvement and his ideas on how to structure this document; Stan
Przybylinski for his willingness to collaborate on roughly hewn ideas and for allowing us to
regularly tap his knowledge of the literature on diffusion of innovation and technology
management; and Anita Carleton for helping us to process and summarize the data and
write the appendix on the results of the 1989 SEPG Workshop.

We are grateful to those who allowed us to interview them about their process group and/or
process improvement work: Glenn Secor of the Software Technology Lab at AT&T Bell
Laboratories; Gary Wigle of the Software Automation Organization at Boeing Aerospace;
Howard Quaife and Gail Sailer of Application Systems Technology at Boeing Computer Ser-
vices; Judah Mogilensky of the Process Enhancement Program at Contel Federal Systems;
Kathy Hornbach of CASE Products Marketing, and the VMS process group at Digital Equip-
ment Corporation; Jerry L. Atkison of Advanced Technology Product Software, Data Sys-
tems Division, at General Dynamics; Jim Perry, Fred Yonda, other members of the process
group, and their management sponsors, Helen Dyer and Connie Ahara, at GTE Government
Systems; Guy Cox and the Corporate Engineering group at Hewlett Packard; Rebecca
Smith, formerly of the Software Methods Lab in the Data and Languages Division at Hewlett
Packard (now with Tandem Computers); Robert Mays at IBM Communications Products;
Kyle Rone of IBM Federal Sector Division in Houston; members of the Software Engineering

78 CMU/SEI-90-TR-24

Process Office at the Naval Ocean System Center; Cathy Libby, Fred Titsworth, and other
members of Raytheon’s Missile Systems Division process group; David Kriegman of Sys-
tems Research and Applications; Walker Royce at TRW Space and Defense Sector, Sys-
tems Integration Group; and Vicky Mosley, Fred Joh, and other members of the Software
Engineering Process Organization at Westinghouse Electronic Systems Group. From each
person we obtained important ideas to share with our readers, and from the group collec-
tively we greatly enhanced our understanding of the overall of what process groups are and
can do.

We thank Dan Clayton (now with Bellcore), members of the original System Development
Technology group, and the many software development projects who together pioneered
the process group work at AT&T Bell Labs. They were the source of many of the ideas in
the guide.

We thank Peter Freeman, then of the University of California at Irvine (now with Georgia
Tech), a long-standing champion of software engineering technology transfer and source of
the idea of managing this process like a project. We also thank Walt Scacchi, of the Univer-
sity of Southern California, who first introduced us to the literature on software technology
transfer.

Finally, we are grateful to several authors in particular:

• Robert L. Grady and Deborah L. Caswell, Software Metrics: Establishing a
Company-Wide Program, Prentice-Hall, 1987.

• H. J. Harrington, The Improvement Process: How America’s Leading Com-
panies Improve Quality, McGraw-Hill, 1987.

• Watts Humphrey, Managing the Software Process, Addison-Wesley, 1989.

• Rosabeth Moss Kanter, The Change Masters: Innovation for Productivity in the
American Corporation, Simon and Schuster, 1983.

• Tom Peters, Thriving on Chaos: Handbook for a Management Revolution, Har-
per & Row, 1987.

• Marvin Weisbord, Productive Workplaces: Organizing and Managing for Dig-
nity, Meaning, and Community, Jossey-Bass, 1987.

CMU/SEI-90-TR-24 79

References

[2167A]
Military Standard, Defense System Software Development.
February 29, 1988
DOD-STD-2167A.

[Ackerman83] A. F. Ackerman, Priscilla J. Fowler, and Robert G. Ebenau.
Software inspections and the industrial production of software.
In Hans-Ludwig Hausen (editor), Proceedings, Symposium on Software

Validation, pages 13-40. North-Holland, September 25-30, 1983.

[ASD800-5] Philip S. Babel.
Software Development Capability/Capacity Review (SDCCR).
Technical Report ASD Pamphlet 800-5, U.S. Department of the Air

Force, Headquarters Aeronautical Systems Division, Acquisition
Management, Wright-Patterson AFB, OH, September 10, 1987.

[Bayer89] Judy Bayer and Nancy Melone.
Adoption of Software Engineering Innovations in Organizations.
Technical Report CMU/SEI-89-TR-17, ADA211573, Software Engineer-

ing Institute, April 1989.

[Card89] D.N. Card and R.A. Berg.
An industrial engineering approach to software development.
J. of Syst. and Software 10(3):159-168, October 1989.

[Card90] D.N. Card.
Measuring Software Design Quality.
Prentice-Hall, 1990.

[Carlyle88] Ralph Emmett Carlyle.
Advanced technology groups.
Datamation 34(21):18-24, November 1, 1988.

[Cho87] Chin-Keui Cho.
Quality Programming: Developing and Testing Software with Statistical

Quality Control.
John Wiley & Sons, Inc., 1987.

[Conner82] Daryl R. Conner and Robert W. Patterson.
Building commitment to organzational change.
Training and Development Journal :18-30, April 1982.

[Crawford85] S.G. Crawford and M.H. Fallah.
Software development process audits - A general procedure.
In Proceedings, 8th International Conference on Software Engineering,

pages 137-141. August 1985.

[Crosby79] Philip B. Crosby.
Quality is Free: the Art of Making Quality Certain.
New American Library, 1979.

80 CMU/SEI-90-TR-24

[Currit86] P.A. Currit, M. Dyer, and H.D. Mills.
Certifying the reliability of software.
IEEE Trans. Software Engineering 12(1):3-11, January 1986.

[Deming82] W. Edwards Deming.
Quality, Productivity, and Competitive Position.
MIT, 1982.

[Deming86] W. Edwards Deming.
Out of the Crisis.
MIT, 1986.

[Ebenau83] Robert G. Ebenau, A.S. Ackerman, M. S. Easterling, P. J. Fowler,
P. Freeman, P. M. Mellema, and V. S. Whitis.
Report of the group on training as a technology transfer vehicle.
In Proceedings, IEEE Computer Society Workshop on Software En-

gineering Technology Transfer, pages 6-8. IEEE Computer Society
Press, 1983.

[Fagan76] M. E. Fagan.
Design and code inspections to reduce errors in program development.
IBM Systems J. 15(3):182-211, July 1976.

[Feigenbaum83] Armand V. Feigenbaum.
Total Quality Control.
McGraw-Hill, 1983.

[Felix83] G.H. Felix and J.L. Riggs.
Productivity measurement by objectives.
National Productivity Rev. , Autumn 1983.

[Flaherty85] M.J. Flaherty.
Programming process productivity measurement system for System/370.
IBM Systems J. 24(2):168-175, 1985.

[Fortuna88] R.M. Fortuna.
Beyond quality: taking SPC upstream.
ASQC Quality Progress , June 1988.

[Fowler86] Priscilla J. Fowler.
In-process inspections of workproducts at AT&T.
AT&T Technical J. 65(2):102-112, March-April, 1986.

[Freeman87] Peter Freeman.
Software Perspectives: The System is the Message.
Addison-Wesley Publishing Company, 1987.

[Gale90] J.L. Gale, J.R. Tirso, and C.A. Burchfield.
Implementing the defect prevention process in the MVS interactive pro-

gramming organization.
IBM Systems J. 29(1):33-43, 1990.

[Gardiner87] J.S. Gardiner and D.C. Montgomery.
Using statistical control charts for software quality control.
Quality and Reliability Engineering Intl. :15-20, January 1987.

CMU/SEI-90-TR-24 81

[Gershon85] Gary Gershon (ed.).
Special issue on quality and producivity.
IBM Systems J. 24(2):74-175, 1985.

[Gessner84] Robert A. Gessner.
Manufacturing Information Systems Implementation Planning.
John Wiley & Sons, Inc., 1984.

[Grady87] Robert L. Grady and Deborah L. Caswell.
Software Metrics: Establishing a Company-Wide Program.
Prentice-Hall, 1987.

[Harrington87] H.J. Harrington.
The Improvement Process: How America’s Leading Companies Improve

Quality.
McGraw-Hill, 1987.

[Humphrey88] Watts Humphrey.
Characterizing the software process: a maturity framework.
IEEE Software :73-79, March 1988.

[Humphrey89] Watts Humphrey.
Managing the Software Process.
Addison-Wesley, 1989.

[IEEE-PMP88] IEEE.
Standard for Software Project Management Plans, ANSI/IEEE Std.

1058.1-1987.
Institute of Electrical and Electronics Engineers, 1988.

[IEEE-SLCP89] IEEE.
Draft Standard for Software Life Cycle Processes, P1074/D4.
Institute of Electrical and Electronics Engineers, August 8, 1989.

[IEEE-SQ86] IEEE.
Guide for Software Quality Planning, ANSI/IEEE Std. 983-1986.
Institute of Electrical and Electronics Engineers, 1986.

[Ishikawa85] Kaoru Ishikawa.
What is Total Quality Control? The Japanese Way.
Prentice-Hall, 1985.

[Jacobson89] John M. Jacobson.
Value-based contracting.
In Proceedings, SOFTCON ’89: Managing Software into the 90’s ... Ac-

quiring the Competitive Edge, pages 189-203. American Defense
Preparedness Association, 1989.

[Janger79] Allen R. Janger.
Matrix Organization of Complex Businesses.
The Conference Board, 1979.

[Juran81] J.M. Juran.
Product quality - a prescription for the West.
Management Rev. , June 1981.

82 CMU/SEI-90-TR-24

[Kanter83] Rosabeth Moss Kanter.
The Change Masters: Innovation for Productivity in the American

Corporation.
Simon and Schuster, 1983.

[Kellner89] Marc I. Kellner.
Software process modeling: value and experience.
SEI Technical Review :23-54, 1989.

[Kenkyusha54] Senkichiro Katsumata (editor).
Kenkyusha’s New Japanese-English Dictionary.
Kenkyusha, 1954.

[Lawler85] E.E. Lawler III and Susan A. Mohrman.
Quality circles after the fad.
Harvard Bus. Rev. :65-71, January 1985.

[Leonard85] Dorothy Leonard-Barton.
Implementing new technology.
Harvard Bus. Rev. :102-110, November-December 1985.

[Leonard88] Dorothy Leonard-Barton.
Implementation as mutual adaptation of technology and organization.
Research Policy 17(5):251-267, October 1988.

[Lorange84] Peter Lorange and Declan Murphy.
Considerations in implementing strategic control.
J. of Bus. Strategy 4(4):27-35, Spring 1984.

[Martin88] Charles F. Martin.
Second-generation CASE tools: a challenge to vendors.
IEEE Software :46-49, March, 1988.

[Mason81] Richard O. Mason and Ian I. Mitroff.
Challenging Strategic Planning Assumptions - Theory, Cases and

Techniques.
John Wiley & Sons, Inc., 1981.

[Mays90] R.G. Mays, C.L. Jones, G.J. Holloway, and D.P. Studinski.
Experiences with defect prevention.
IBM Systems J. 29(1):4-32, 1990.

[Morton83] Richard Morton (editor).
IEEE Computer Society Workshop on Software Engineering Technology

Transfer.
IEEE Computer Society Press, 1983.

[Myers86] Andrew B. Myers (ed.).
Special issue on quality: theory and practice.
AT&T Technical J. 65(2):4-118, March/April 1986.

[ONeill80] D. O’Neill.
The management of software engineering, Part II: Software engineering

program.
IBM Systems J. 19(4):421-431, 1980.

CMU/SEI-90-TR-24 83

[Persico89] J. Persico, Jr.
Team up for quality improvement.
ASQC Quality Progress :33-37, January 1989.

[Pinto88] Jeffrey Pinto and John Prescott.
Variations in critical success factors over the stages

in the project life cycle.
J. of Management 14(1):5-18, 1988.

[Pressman88] Roger S. Pressman.
Making Software Engineering Happen: A Guide for Instituting the

Technology.
Prentice-Hall, 1988.

[Przybylinski88] Stan Przybylinski and Priscilla Fowler (editors).
Transferring Software Engineering Tool Technology.
The Computer Society of the IEEE, 1988.

[Quinn77] James Brian Quinn.
Strategic goals: process and politics.
Sloan Mgmt. Rev. 19(1):21-37, Fall 1977.

[Radice85] R.A. Radice, N.K. Roth, A.C. O’Hara, Jr., and W.A. Ciarfella.
A programming process architecture.
IBM Systems J. 24(2):79-90, 1985.

[Rogers83] Everett M. Rogers.
Diffusion of Innovation.
The Free Press, 1983.

[Scacchi87] Walt Scacchi.
SEI Curriculum Module SEI-CM-10-1.0.
Models of Software Evolution: Life Cycle and Process, Software En-

gineering Institute, October 1987.

[Schmidt87] Terry Schmidt and Merlyn Kettering.
Planning for Successful Project Implementation: Guidelines for the

Project Team.
Technical Report, United States Department of Agriculture, 1987.

[Schultz87] Randall Schultz, Dennis Slevin, and Jeffrey Pinto.
Strategy and tactics in a process model of project implementation.
Interfaces 17(3):34-46, May-June 1987.

[Skrabec89] Q.R. Skrabec.
The transition from 100% inspection to process control.
ASQC Quality Progress :35-36, April 1989.

[SMAP4.3] Management Control and Status Reports Documentation Standard and
Data Item Descriptions.
Release 4.3 edition, Office of Safety, Reliability, Maintainability, and

Quality Assurance, Software Management and Assurance Program,
National Aeronautics and Space Administration, Washington, DC,
February 28, 1989.

84 CMU/SEI-90-TR-24

[SoftProcWork89] Colin Tully.
Representing and enacting the software process.
In Proceedings of the 4th International Software Process Workshop held

at Moretonhampstead, Devon, UK, May 11-13, 1988. Also available
as ACM Software Engineering Notes, June 1989.

[Stein80] Barry A. Stein and Rosabeth Moss Kanter.
Building the parallel organization: Toward mechanisms for permanent

quality of work life.
J. Applied Behavioral Science (16):371-88, July 1980.

[Thomas88] .
Most companies fail software test.
Advanced Military Computing 4(7), 1988.

[Tichy83] Noel Tichy.
The essentials of strategic change management.
J. of Bus. Strategy 3(4):55-67, Spring 1983.

[Tornatzky90] Louis G. Tornatzky and Mitchell Fleischer.
The Processes of Technological Innovation.
Lexington Books, 1990.

[TQM88] Department of Defense.
Total Quality Management Master Plan.
August 1988

[TR23] Watts Humphrey and William Sweet.
A Method for Assessing the Software Engineering Capability of

Contractors.
Technical Report CMU/SEI-87-TR-23, ADA187230, Software Engineer-

ing Institute, September 1987.

[TR7] Timothy G. Olson, Watts Humphrey, and David Kitson.
Conducting SEI-Assisted Software Process Assessments.
Technical Report CMU/SEI-89-TR-7, ADA219065, Software Engineering

Institute, February 1989.

[Trainor89] Michael Sullivan-Trainor.
IBM’s Ford suggests optimum IS spending.
Computerworld (23):17, March 27, 1989.

[Turner78] W.C. Turner, J.H. Mize, and K.E. Case.
Introduction to Industrial and Systems Engineering.
Prentice-Hall, 1978.

[Weinberg71] Gerald M. Weinberg.
The Psychology of Computer Programming.
Van Nostrand Reinhold, 1971.

[Weisbord87] Marvin Weisbord.
Productive Workplaces: Organizing and Managing for Dignity, Meaning,

and Community.
Jossey-Bass, 1987.

CMU/SEI-90-TR-24 85

[Willborn88] W. Willborn.
Registration of quality programs.
ASQC Quality Progress :56-68, September 1988.

86 CMU/SEI-90-TR-24

CMU/SEI-90-TR-24 87

Appendix A: Characterizing the Software Process: A
Maturity Framework

This is a reprint of [Humphrey88].

Characterizing the Software
Process: A Maturity Framework

Watts S. Humphrey
Software Engineering Institute

Copyright (c) 1988 The Institute of Electrical and Electronics Engineers, Inc.
Reprinted with permission from IEEE SOFTWARE,
10662 Los Vaqueros Circle, Los Alamitos, CA 90720

Characterizing the
Software Process:

A Maturity Framework

Software Quality and
productivity must

improve. But where to
start? This model helps

organizations identify
their highest priority

problems and start
making improvements.

IMarch 1988

Watts S. Humphrey, Software Engineering lnstitute

T he amount of money spent on soft-
ware in the US grows approxi-
mately 12 percent each year, and

the demand for added software functions
grows even faster. Software is a major and
increasing portion of US Defense Dept.
procurement costs, and software often
adversely affects the schedules and effec-
tiveness of weapons systems.

In recognition of the need to improve
the development of military software, the
Defense Dept. has launched several initia-
tives on software reliability, maintainabil-
ity, and testing, including the Ada Joint
Program Office and the STARS program.
The Defense Dept. formed the Software
Engineering Institute at Carnegie Mellon
University in 1984 to establish standards
of excellence for software engineering and
to accelerate the transition of advanced
technology and methods into practice.

0740.7459/88/0300/0073/SO1.00 01988 IEEE

One SEI project is to provide the
Defense Dept. with some way to charac-
ter ize the capabi l i t ies of sof tware-
development organizations. The result is
this software-process maturity frame-
work, which can be used by any software
organization to assess its own capabilities
and identify the most important areas for
improvement.

Ideal Software process
It is worthwhile to examine the charac-

teristics of a truly effective software pro-
cess. First, it is predictable: Cost estimates
and schedule commitments are met with
reasonable consistency and the quality of
the resulting products generally meet user
needs.

Statistical control. The basic principle
of software process management is that if

73

Figure 1. The five levels of process maturity.

the development process is under statisti-
cal control, a consistently better result can
be achieved only by improving the process.
If the process is not under statistical con-
trol, sustained progress is not possible until
it is.’

When a process is under statistical con-
trol, repeating the work iv roughly the
same way will produce roughly the same
result. /

W.E. Deming, in his work with the Jap-
anese industry after World War II, applied
the concepts of statistical process control
to industry.’ While there are important
differences, these concepts are just as
applicable to software as they are to
automobiles, cameras, wristwatches, and
steel. A software-development process
that is under statistical control will pro-
duce the desired results within the antici-
pated limits of cost, schedule, and quality.

Measurement. The basic principle
behind statistical control is measurement.
As Lord Kelvin said a century ago, “ . . .
when you can measure what you are
speaking about. and express it in numbers,
you know something about it; but when
you cannot measure it, when you cannot
express it in numbers, your knowledge is
of a meager and unsatisfactory kind; it
may be the beginning of knowledge, but
you have scarcely in your thoughts
advanced to the stage of science. . . . “2

There are several factors to consider in

74

measuring the programming process. Per-
haps most important is that the mere act
of measuring human processes changes
them. Since people’s fears and motivations
are involved, the results must be viewed in
a different light than data on natural
phenomena.

It is also essential to limit the measure-
ments to those few items that will really be
used. Measurements are both expensive
and disruptive; overzealous measuring can
degrade the processes we are trying to
improve.

Development-process
improvement

An important first step in addressing
software problems is to treat the entire
development task as a process that can be
controlled, measured, and improved. We
define a process as a sequence of tasks
that, when properly performed, produces
the desired result. Clearly, a fully effective
software process must consider the rela-
tionships of all the required tasks, the tools
and methods used, and the skill, training,
and motivation of the people involved.

To improve their software capabilities,
organizations must take five steps:

(1) understand the current status of their
development process or processes,

(2) develop a vision of the desired
process,

(3) establish a list of required process

improvement actions in order of priority,
(4) produce a plan to accomplish these

actions, and
(5) commit the resources to execute the

plan.
The maturity framework developed at

the SEI addresses these five steps by
characterizing a software process into one
of five maturity levels. By establishing
their organization’s position in this matu-
rity structure, software professionals and
management can more readily identify
those areas where improvement actions are
most likely to produce results.

Process maturity levels
As Figure 1 shows, the five levels of pro-

cess maturity are:
1. Initial. Until the process is under

statistical control, no orderly progress in
process improvement is possible.

2. Repeatable. The organization has
achieved a stable process with a repeatable
level of statistical control by initiating rig-
orous project management of commit-
ments, cost, schedule, and changes.

3. Defined. The organization has
defined the process, to ensure consistent
implementation and provide a basis for
better understanding of the process. At
this point, advanced technology can use-
fully be introduced.

4. Managed. The organization has
initiated comprehensive process measure-
ments, beyond those of cost and schedule
performance. This is when the most signif-
icant quality improvements begin.

5. Optimizing. The organization now
has a foundation for continued improve-
ment and optimization of the process.

These levels have been selected because
they

*reasonably represent theactual histor-
ical phases of evolutionary improvement
of real software organizations,

l represent a measure of improvement
that is reasonable IO achieve from 1 he prior
level,

l suggest interim improvement goals
and progress measures. and

l make obvious a set of immediate
improvement priorities, once an organiza-
tion’s status in this framework is known.

While there are many other elements to
these maturity-level transitions, the basic

IEEE Software

objective is to achieve a controlled and
measured process as the scientific founda-
tion for continuous improvement. This
structure is intended to be used with an
assessment and management methodol-

ogy, as outlined in the box on pp. 76-77.

Initial Process
The Initial Process could properly be

called ad hoc, and it is often even chaotic.
Here, the organization typically operates
without formalizied procedures, cost esti-
mates, and project plans. Tools are neither
well integrated with the process nor uni-
formly applied. Change control is lax and
there is little senior management exposure
to or understanding of the problems and
issues. Since problems are often deferred
or even forgotten, software installation
and maintenance often present serious

Organizations at the Initial Process level
can improve their performance by institut-
ing basic project controls. The most
important are:

l Project management. The fundamen-
tal role of a project-management system is
to ensure effective control of commit-
ments. This requires adequate prepara-
t ion, c lear responsib i l i ty , a publ ic
declaration, and a dedication to per-
formance.3

For software, this starts with an under-
standing of the job’s magnitude. In any
but the simplest projects, a plan must then
‘be developed to determine the best sched-
ule and the resources required. In the
absence of such an orderly plan, no com-

problems.
While organizations at this level may

A disciplined software

have formal procedures for project con-
development organization

trol, there is no management mechanism must have senior
to ensure they are used. The best test is to management oversight.
observe how such an organization behaves
in a crisis. If it abandons established proce-
dures and reverts to merely coding and
testing, it is likely to be at the Initial Pro-
cess level. After all, if the techniques and
methods are appropriate. they must be
used in a crisis and if they are not appro-
priate, they should not be used at all.

One reason organizations behave chaot-
ically is that they have not gained sufficient
experience to understand the consequences
of such behavior. Because many effective
software actions such as design and code
reviews or test data analysis do not appear
to directly support shipping the product,
they seem expendable.

It is much like driving an automobile.
Few drivers with any experience will con-
tinue driving for very long when the engine
warning light comes on, regardless of their
rush. Similarly, most drivers starting on a
new journey will, regardless of their hurry,
pause to consult a map. They have learned
the difference between speed and progress.

In software, coding and testing seem
like progress, but they are often only
wheel-spinning. While they must be done,
there is always the danger of going in the
wrong direction. Without a sound plan
and a thoughtful analysis of the problems,
there is no way to know.

mitment can be better than an educated
guess.

l Management oversight. A disciplined
software-development organization must
have senior management oversight. This
includes review and approval of all major
development plans before official com-
mitment.

Also, a quarterly review should be con-
ducted of facility-wide process compli-
ance, installed-quality performance,
schedule tracking, cost trends, computing
service. and quality and productivity goals
by project. The lack of such reviews typi-
cally results in uneven and generally inade-
quate implementation of the process as
well as in frequent overcommitments and
cost surprises.

l Qual i ty assurance. A qual i ty-
assurance group is charged with assuring
management that the software-develop-
ment work is actually done the way it is
supposed to be done. To be effective, the
assurance organization must have an
independent reporting line to senior
management and sufficient resources to
monitor performance of ail key planning,
implementation, and verification activi-

ties. This generally requires an organiza-
tion of about 5 to 6 percent the size of the
development organization.
l Change control. Control of changes in

software development is fundamental to
business and financial control as well as to
technical stability. To develop quality soft-
ware on a predictable schedule, the
requirements must be established and
maintained with reasonable stability
throughout the development cycle.
Changes will have to be made, but they
must be managed and introduced in an
orderly way.

While occasional requirements changes

are needed, historical evidence demon-
strates that many of them can be deferred
and phased in later. If all changes are not
controlled, orderly design, implementa-
tion, and testing is impossible and no qual-
ity plan can be effective.

Repeatable Process
The Repeatable Process has one impor-

tant strength over the Initial Process: It
provides commitment control.

This is such an enormous advance over
the Initial Process that the people in the
organization tend to believe they have
mastered the software problem. They do
not realize that their strength stems from
their prior experience at similar work.
Organizations at the Repeatable Process
level thus face major risks when they are
presented with new challenges.

Examples of the changes that represent
the highest risk at this level are:
l New tools and methods will likely

affect how the process is performed, thus
destroying the relevance of the intuitive
historical base on which the organization
relies. Without a defined process frame-
work in which to address these risks, it is

even possible for a new technology to do
more harm than good.
l When the organization must develop

a new kind of product, it is entering new
territory. For example, a software group
that has experience developing compilers
will likely have design, scheduling, and
estimating problems if assigned to write a
control program. Similarly, a group that
has developed small, self-contained pro-
grams will not understand the interface
and integration issues involved in large-
scale projects. These changes again

March 1988 75

destroy the relevance of the intuitive
historical basis for the organization’s
work.

l Major organization changes can be
highly disruptive. In the Repeatable Pro-
cess organization, a new manager has no
orderly basis for understanding what is
going on and new team members must
learn the ropes through word of mouth.

The key actions required to advance
from the Repeatable Process to the
Defined Process are:

1. Establish a process group. A process
group is a technical group that focuses
exclusively on improving the software-
development process. In most software
organizations, people are entirely devoted
to product work. Until someone is given
a full-time assignment to work on the pro-
cess, little orderly progress can be made in
improving it.

The responsibilities of process groups
include defining the development process,
identifying technology needs and oppor-
tunities, advising the projects, and con-
ducting quarterly management reviews of
process status and performance. Typi-
cally, the process group should be about
1 to 3 percent the size of the development
organization. Because of the need for a
nucleus of skills, groups smaller than
about four are unlikely to be fully effec-
tive. Small organizations that lack the
experience base to form a process group
should address these issues through spe-
cially formed committees of experienced
professionals or by retaining consultants.

2. Establish a software-development
process architecture that describes the
technical and management activities
required for proper execution of the devel-
opment process.’ The architecture is a
structural decomposition of the develop-
ment cycle into tasks, each of which has
entry criteria, functional descriptions,
verification procedures, and exit criteria.
The decomposition continues until each

defined task is performed by an individual
or single management unit.

3. If they are not already in place, intro-
duce a family of software-engineering
methods and technologies. These include
design and code inspections, formal design
methods, library-control systems, and
comprehensive testing methods. Prototyp-

76

ing should also be considered. along with
the adoption of modern implementation
languages.

Defined Process
With the Defined Process, the organiza-

tion has achieved the foundation for major
and continuing progress. For example, the
development group, when faced with a cri-
sis, will likely continue to use the Defined
Process. The foundation has now been
established for examining the process and

deciding how to improve it.
As powerful as the Defined Process is,

it is still only qualitative: There is little data
to indicate what is going on or how effec-
tive the process really is. There is consider-

able debate about the value of soft-
ware-process measurements and the best
ones to use. This uncertainty generally
stems from a lack of process definition and
the consequent confusion about the spe-
cific items to be measured. With a defined
process, we can focus the measurements
on specific tasks. The process architecture
is thus an essential prerequisite to effective
measurement.

The key steps3,4 to advance to the
Managed Process are:

1. Establish a minimum, basic set of
process measurements to identify the qual-
ity and cost parameters of each process
step. The objective is to quantify the rela-

tive costs and benefits of each major pro-

How to use this framework
This process-maturity structure is intended to be used with an assessment

methodology and a management system.‘.’
Assessment lets you identify the organization’s specific maturity status. A

management system establishes a structure for actually implementing the pri-
ority actions necessary to improve the organization. Once its position in this matu-
rity structure is defined, the organization can concentrate on those items that will
let it advance to the next level.

When, for example, a software organization does not have an effective project-
planning system, it may be difficult or even impossible to introduce advanced
methods and technology. Poor project planning generally leads to unrealistic
schedules, inadequate resources, and frequent crises. In such circumstances, new
methods are usually ignored, and the focus is on coding and testing.

Using this maturity framework, the SEI has developed an assessment question-
naire and methodology, a portion of which is shown in Figure A.4,5 The question-
naire has been reviewed by more than 400 governmental and industrial
organizations. Also, it has been completed by more than 50 programming profes-
sionals from nearly as many software organizations. A section of our question-
sionals from nearly as many software organizations.

The SEI has also used the assessment methodology to conduct in-depth tech-
nical reviews of 25 programming projects in four large programming organizations.

Through this work, the assessment methodology and questionnaire have
evolved, but the five-level maturity framework has remained essentially
unchanged. We have found that it portrays, with reasonable accuracy, the status
and problems as seen by the managers and professionals in the organizations
reviewed.

These early results indicate that the model reasonably represents the state of
such organizations and providesa mechanism to rapidly identify the key improve-
ment issues they face. At this time, the data is loo limited to provide any more
detailed information as to maturity distribution by industry, organization size, or
type of work.

References
1. W.S. Humphrey, Managing for Innovation - Leading Technical People, Prentice-Hall. Engle-

wood Cliffs, N.J.. 1987.
2. R.A. Radice et al., “A Programming Process Study.” IBM Systems J.. Vol. 24. No. 2. 1985.

pp. 91-101.
3. R.A. Radice et al.. “A Programming Process Architecture,” ISM Systems J., Vol. 24. No.

2.1985. pp. 7940.

IEEE Software

cess activity, such as the cost and yield of
error detection and correction methods.

2. Establish a process database with the
resources to manage and maintain it. Cost
and yield data should be maintained cen-
trally to guard against loss, to make it
available for all projects, and to facilitate
process quality and productivity analysis.

3. Provide sufficient process resources
to gather and maintain this data and to
advise project members on its use. Assign
skilled professionals to monitor the qual-
ity of the data before entry in the database
and to provide guidance on analysis
methods and interpretation.

4. Assess the relative quality of each
product and inform management where

quality targets are not being met. An
independent quality-assurance group
should assess the quality actions of each
project and track its progress against its
quality plan. When this progress is com-
pared with the historical experience on
similar projects, an informed assessment
generally can be made.

Managed Process
In advancing from the Initial Process

via the Repeatable and Defined Processes
to the Managed Process, software organi-
zations typically will experience substan-
tial quality improvements. The greatest
potential problem with the Managed Pro-
cess is the cost of gathering data. There are

4. W.S. Humphrey and D.H. Kitson. “Preliminary Report on Conducting SEI-Assisted Assess-
ments of Software Engineering Capability,“ Tech. Report SEI-87-TR-16, Software Eng. Inst..
Pittsburgh, July 1987.

5. W.S. Humphrey and W.L. Sweet, “A Method for Assessing the Software Engineering Capa-
bility of Contractors,” Tech. Report SEI-867-TR-23, Software Eng. inst., Pittsburgh, Sept.
1 9 8 7 .

2.3. Data Management and Analysis
Data management deals with the gathering and retention of process metrics. Data manage-

ment requires standardized data definitions, data management facilities, and a staff to ensure
that data is promptly obtained, properly checked, accurately entered into the database, and
effectively managed.

Analysis deals with the subsequent manipulation of the process data to answer questions
such as, “Is there is a relatively high correlation between error densities found in test and those
found in use?” Other types of analyses can assist in determining the optimum use of reviews
and resources, the tools most needed, testing priorities. and needed education.

2.3.1. Has a managed and controlled process database been established for process metrics
data across all projects?

2.3.2. Are the review data gathered during design reviews analyzed?

2.3.3. Is the error data from code reviews and tests analyzed to determine the likely distribution
and characteristics of the errors remaining in the product?

2.3.4. Are analyses of errors conducted to determine their process related causes?

2.3.5. Is a mechanism used for error cause analysis?

2.3.6. Are the error causes reviewed to determine the process changes required to prevent
them?

2.3.7. Is a mechanism used for initiating error prevention actions?

2.3.8. Is review efficiency analyzed for each project?

2.3.9. Is software productivity analyzed for major process steps?

Figure A. A portion of the SEl’s assessment questionnaire.

March 1988

an enormous number of potentially valu-
able measures of software development
and support, but such data is expensive to
gather and maintain.

Therefore, approach data gathering
with care and precisely define each piece
of data in advance. Productivity data is
generally meaningless unless explicitly
defined. For example, the simple measure
of lines of source code per development
month can vary by 100 times of more,
depending on the interpretation of the
parameters. The code count could include
only new and changed code or all shipped
instructions. For modified programs, this
can cause a ten-times variation. Similarly,
you can use noncomment, nonblank lines,
executable instructions, or equivalent
assembler instructions, with variations
again of up to seven times.5 Management,
test, documentation, and support person-
nel may or may not be counted when cal-
culating labor months expended. Again,
the variations can run at least as high as
seven times.6

When different groups gather data but
do not use identical definitions, the results
are not comparable, even if it made sense
tocompare them. The tendency with such
data is to use it to compare several groups

and put pressureon those with the lowest
ranking. This is a misapplication of pro-
cess data.

First, it is rare that two projects are com-
parable by any simple measures. The var-
iations in task complexity caused by
different product types can exceed five to
one. Similarly, the cost per line of code of
small modifications is often two to three
times that for new programs. The degree
of requirements change can make an enor-
mous difference, as can the design status
of the base program in the case of
enhancements.

Process data must not be used to com-
pare projects or individuals. Its purpose is
to illuminate the product being developed
and to provide an informed basis for
improving the process. When such data is
used by management to eva lua te

individuals or teams, the reliability of the
data itself will deteriorate. The US Consti-
tution’s Fifth Amendment, which protects
against self-incrimination. is based on
sound principles: Few people can be
counted on to provide reliable data on

77

their own performance.
The two fundamental requirements to

advance from the Managed Process to the
Optimizing Process are:

1. Support automatic gathering of pro-
cess data. Some data cannot be gathered
by hand, and all manually gathered data
is subject to error and omission.

2. Use this data to both analyze and
modify the process to prevent problems
and improve efficiency.

Optimizing Process
In varying degrees, process optimization

goes on at all levels of process maturity.
With the step from the Managed to the
Optimizing Process, however, there is a
paradigm shift. Up to this point, software-
development managers have largely
focused on their products and will typi-
cally only gather and analyze data that
directly relates to product improvement.
In the Optimizing Process, the data is
available to actually tune the process itself.
With a little experience, management will
soon see that process optimization can
produce major quality and productivity
improvements.

For example, many errors can be iden-
tified and fixed far more economically by
code inspections than through testing.
Unfortunately, there is little published
data on the costs of finding and fixing
errors.’ However, I have developed a use-
ful rule of thumb from experience: It takes
about one to four working hours to find
and fix a bug through inspections and
about 15 to 20 working hours to find and
fix a bug in function or system test. It is
thus clear that testing is not a cost-effective
way to find and fix most bugs.

However, some kinds of errors are
either uneconomical or almost impossible
to find except by machine. Examples are
errors involving spelling and syntax, inter-
faces, performance, human factors, and
error recovery. It would thus be unwise to
eliminate testing completely because it
provides a useful check against human
frailties.

The data that is available with the
Optimizing Process gives us a new perspec-
tive on testing. For most projects, a little
analysis shows that there are two distinct
activities involved. The first is the removal
of bugs. To reduce this cost, inspections

78

should be emphasized together with any
other cost-effective techniques. The role of
functional and system testing should then
be changed to one of finding symptoms
that are further explored to see if the bug
is an isolated problem or if it indicates

design problems that require more com-
prehensive analysis.

In the Optimizing Process, the organi-
zation has the means to identify the
weakest elements of the process and fix
them. At this point in process improve-
ment, data is available to justify the appli-
cation of technology to various critical
tasks and numerical evidence is available
on the effectiveness with which the process
has been applied to any given product. We
no longer need reams of paper to describe
what is happening because simple yield
curves and statistical plots provide clear
and concise indicators. It is now possible
to assure the process and hence have con-
fidence in the quality of the resulting
products.

People in the process. Any software-
development process is dependent on the
quality of the people who implement it.
Even with the best people, however, there
is always a limit to what they can accom-
plish. When engineers are already working
50 to 60 hours a week, it is hard to see how
they could handle the vastly greater
challenges of the future.

The Optimizing Process helps in several
ways:

l It helps managers understand where
help is needed and how best to provide the
people with the support they require.

l It lets professionals communicate in
concise, quantitative terms. This facilitates
the transfer of knowledge and minimizes
the likelihood of their wasting time on
problems that have already been solved.

l It provides‘ the framework for the
professionals to understand their work
performance and to see how to improve it.
This results in a highly professional envi-
ronment and substantial productivity
benefits, and it avoids the enormous
amoun t o f e f f o r t t ha t i s gene ra l l y
expended in fixing and patching other peo-
ple’s mistakes.

The Optimizing Process provides a dis-
ciplined environment for professional
work. Process discipline must be handled

with care, however, for it can easily
become regimentation. The difference
between a disciplined environment and a
regimented one is that discipline controls
the environment and methods to specific
standards while regimentation defines the
actual conduct of the work.

Discipline is required in large software
projects to ensure, for example, that the
people involved use the same conventions,
don’t damage each other’s products, and
properly synchronize their work. Dis-
cipline thus enables creativity by freeing
the most talented software professionals
from the many crises that others have
created.

The need. There are many examples of
disasters caused by software problems,
ranging from expensive missile aborts to
enormous financial losses. As the com-
puterization of our society continues, the
public risks due to poor-quality code will
become untenable. Not only are our sys-
tems being used in increasingly sensitive
applications, but they are also becoming
much larger and more complex.

While proper questions can be raised
about the size and complexity of current
systems, they are human creations and
they will, alas, continue to be produced by
humans - with all their failings and crea-
tive talents. While many of the currently
promising technologies will undoubtedly
help, there is an enormous backlog of
needed functions that will inevitably trans-
late into vast amounts of code.

More code means increased risk of error
and, when coupled with more complexity,
these systems will become progressively
less testable. The risks will thus increase
astronomically as we become more effi-
cient at producing prodigious amounts of
new code.

As well as being a management issue,
quality is an economic one. It is always
possible to do more inspections or to run
more tests, but it costs time and money to
do so. It is only with the Optimizing Pro-
cess that the data is available to understand
the costs and benefits of such work. The
Optimizing Process thus provides the
foundation for significant advances in
sof tware qual i ty and s imul taneous
improvements in productivity.

IEEE Software

There is little data on how long it takes
for software organizations to advance
through these maturity levels toward the
Optimizing Process. Based on my experi-
ence, transition from level 1 to level 2 or
from level 2 to level 3 take from one to
three years, even with a dedicated manage-
ment commitment to process. improve-
ment. To date, no complete organizations
have been observed at levels 4 or 5.

To meet society’s needs for increased
system functions while simultaneously
addressing the problems of quality and
productivity, software managers and
professionals must establish the goal of
moving to the Optimizing Process.

T his software-development process-
m a t u r i t y m o d e l r e a s o n a b l y
represents the actual ways in which

sof tware-development organizat ions
improve. It provides a framework for
assessing these organizations and identify-

ing the priority areas for immediate
improvement. It also helps identify those
places where advanced technology can be
most valuable in improving the software-
deve lopmen t p rocess .

The SEI is using this model as a founda-
tion for a continuing program of assess-
ments and software process development.
These assessment methods have been
made public,8,9 and preliminary data is
now available from several dozen software
organizations.

Figure 2 shows the maturity distribution
of these organizations and the three lead-
ing problems faced at each level. At level

one, the distribution is shown by quartile.
There is not yet sufficient data to provide
this detail for levels 2 or 3. As further data
is gathered, additional reports will be pub-
lished on the results obtained.

Acknowledgments
Much of the early work on software process

maturity was suggested by my former colleagues
at IBM. I am particularly indebted to Ron
Radice and Jack Harding for their insights and
support. In addition, William Sweet of the SEI
and Martin Owens and Herman Schultz of
Mitre Corp. have made valuable contributions
to this work. I am also indebted to my colleagues
at the SEI, particularly Rodger Blair, Larry
Druffel. and Greg Hansen, for their helpful
comments and suggestions. This work was sup-
ported by the Defense Dept.

4 & up

Problem areas’ Error projection
 Test and review coverages
 Process metrics database

 Design and code reviews
 Software engineering training
 Software engineering process group

schedule

1

2% 12% 28% 28% 21% 9%
Software process maturing distribution (In quantities)

I

Figure 2. Early results from several dozen software organizations queried by
the SEI shows the maturity distribution and the three leading problems faced
at each level. At level one, the distribution is shown by quartile. There is not
yet sufficient data to provide this detail for levels 2 or 3. To date, no complete
organizations have been observed at levels 4 or 5.

References
I. W.E. Deming, “Quality, Productivity, and

Competitive Position,” tech. report, MIT
Center for Advanced Eng. Study, Cam-
bridge, Mass., 1982.

2. J.R. Dunham and E. Kruesi, “The Mea-
surement Task Area,” Computer, Nov.
1983. pp. 41-54.

3. W.S. Humphrey, Managing for Innova-
tion: Leading Technical People, Prentice-
Hall, Englewood Cliffs, N.J., 1987.

4. R.A. Radice et al., “A Programming Pro-
cess Architecture,” IBM Systems J., Vol.
24, No. 2. 1985. pp. 79-90.

5. M.L. Shooman. Software Engineering:
Design, Reliability, and Management,
McGraw-Hill. New York, 1983.

6. R.W. Wolverton. “The Cost of Developing
Large-Scale Software,” IEEE Trans. Com-
puters, June 1974, pp 615-636.

7. M.L. Shooman and M.I. Bolsky, “Types,
Distribution, and Test and Correction
Times for Programming Errors,” Proc.
Int’l Conf. Reliable Software, IEEE. New
York, 1975, pp. 347-357.

8. W.S. Humphrey and D.H. Kitson,
“Preliminary Report on Conducting SEI-
Assisted Assessments of Software-
Engineering Capability,” Tech. Report
SEI-87-TR-16. Software Eng. Inst., Pitts-
burgh, July 1987.

9. W.S. Humphrey and W.L. Sweet. “A
Method for Assessing the Software
Engineering Capability of Contractors,”
Tech. Report SEI-87-TR-23, Software Eng.
Inst.. Pittsburgh, Sept. 1987.

Watts S. Humphrey is director of the software
process program for the Software Engineering
Institute. This group provides leadership in
establishing advanced software engineering
processes, metrics, methods, and quality pro-
grams for the US government and its con-
tractors.

He worked at IBM from 1959 to 1986, where
he was director of programming quality and
process. Humphrey has written two books,
Managing for Innovation: Leading Technical
People and Switching Circuits with Computer
Applications.

Humphrey received a BS in physics from the
University of Chicago, an MS in physics from
the Illinois Institute of Technology, and an
MBA from the University of Chicago. He has
taught graduate electrical engineering at North-
eastern University. An IEEE Fellow, he is also
a member of the ACM.

Questions about this article can be addressed
to Humphrey at the SEI, Carnegie Mellon Uni-
versity, Pittsburgh, PA 15213.

March 1998 79

88 CMU/SEI-90-TR-24

.

CMU/SEI-90-TR-24 95

Appendix B: The Quality Movement and Software
Engineering Process Improvement

by David N. Card
Computer Sciences Corporation

In recent years, concern for quality has become a national and international movement.
Today, quality is a key factor in international competition. Throughout government and in-
dustry, new policies, audit programs, and the offering of prizes promote quality improvement
actions. While this movement first became popular in Japan, many of the underlying con-
cepts and implementing techniques were developed in the United States.

In the United States, the Department of Commerce and NASA give major awards to com-
panies that demonstrate significant improvements and a commitment to quality. Japan has
offered the Deming Prize for many years. The United Kingdom requires quality programs to
be audited and certified [Willborn88]. Italy has also made moves in this direction.

In recognition of the increasing importance of quality, the Department of Defense recently
developed a Total Quality Management (TQM) Policy [TQM88] that aims to achieve con-
tinuous improvement of products and services acquired for and produced by DoD. TQM
practices will be inserted gradually into agency and contractor organizations on a seven-
year schedule. In addition, the SEI has developed software capability evaluation criteria
[TR23] to provide a basis for assessing software engineering organizations.

The remainder of this appendix discusses how the quality movement and TQM apply to
software engineering. The appendix summarizes basic quality improvement strategies and
identifies milestones in quality technology. Most of the discussion deals with the process
management approach to quality improvement and the software quality technology required
to apply that approach to software engineering.

B.1. Quality Technology Milestones

The milestones in the development of quality technology in manufacturing are widely recog-
nized, as shown in Figure B-1. Product inspection began soon after the introduction of the
assembly line (c. 1920). Japan started to adopt statistical methods of process control about
1960, when it embarked on a major effort to penetrate the world electronics market. Since
then, most manufacturers have been driven to adopt similar methods. Process control re-
quires understanding the capability of a process and setting control limits [Ishikawa85] for
key process variables. More recently (c. 1980), attention has shifted to improving the under-
lying process and product designs.

The new quality technology has supplemented rather than replaced older quality technology.
During this 70-year period, the key innovation was the shift from the product to the process
as the focus for quality control and improvement. The transition from a product-centered to

96 CMU/SEI-90-TR-24

a process-centered view of quality is not easy. Experience from manufacturing indicates
that it takes 8 to 10 years for an organization to move from product inspection to process
control [Skrabec89]. Changing organizational behavior takes time, as recognized in the 7-
year schedule of the TQM Master Plan [TQM88].

1920 1940 1960 1980

Product
Inspection

Process
Control

Design
Improvement

QUALITY
IMPROVEMENT

POTENTIAL

Figure B-1: The Evolution of Quality Assurance Technology

Adapted from [Fortuna88].

B.2. Quality Improvement Strategies

The significance and advantage of the process-centered approach to quality improvement
can be seen by comparing it with two other commonly practiced approaches: exhortation
and management by objectives. Understanding the deficiencies and limitations of these ap-
proaches may help to overcome the drawbacks associated with using them.

Exhortation relies on slogans, posters, buttons, and speeches to encourage workers to per-
form better. Usually, the notion of "better performance" is not well-defined. Moreover,
management typically has no objective measure of the quality actually achieved. This ap-
proach is inexpensive to implement and does not require much technical expertise to
operate.

Management by objectives involves identifying specific productivity and quality indicators.
Management then sets improvement objectives for workers to achieve (for example, the ob-
jective matrix in [Felix83]). The measures are not tied to any specific process definition.
Consequently, it is not always clear whether an improvement has occurred, or whether costs
and problems have simply been shifted to an activity that is not measured. To compensate
for this, several measures may be used simultaneously. More importantly, setting numerical
objectives, although it provides an incentive, does not help ascertain how to make improve-
ments, which is the hardest part of the task.

In contrast, process management provides a systematic approach to controlling and improv-

CMU/SEI-90-TR-24 97

ing quality. Studying the process and analyzing its performance does help to develop im-
provement strategies. Juran recommends four steps [Juran81]:

1. Study the symptoms of poor quality (defects and failures).

2. Develop a theory or explanation of the cause of poor quality.

3. Test the theory in production to establish the cause.

4. Implement corrective or improvement action.

Deming recommends a 14-point organization-wide approach [Deming82]. The DoD TQM
initiative is based on Deming’s principles. The first and most important point of the Deming
approach is long-term management commitment to quality improvement. Deming recog-
nizes two types of causes of poor quality. Special causes show up as failures in the es-
tablished process; the process is not working as intended and needs to be tuned or repaired
because performance is less than expected. Common causes are basic weaknesses in the
underlying process. Properly trained workers can identify and correct special causes. Only
management has the authority to make the basic changes necessary to deal with common
causes.

Both types of problems can be addressed with the same approach: the Shewart plan-do-
check-act cycle shown in Figure B-2 [Deming82]. The cycle shows obvious similarity to
Juran’s four steps. The key message from Juran, Deming, and others in the quality move-
ment is that long-term improvement results only from systematic study and action, not from
slogans or arbitrary objectives.

B.3. Process Management Approach

The process management approach includes three essential activities: process definition,
process control, and process improvement. An undefined process cannot be controlled. An
uncontrolled process cannot be improved consistently. Because improvement means
change, attempting to improve an unstable process often leads to further instability. Figure
B-3 shows how these elements are connected by the common threads of performance data
and corrective action.

The process definition activity provides a prescription for performing work. Measuring the
initial process performance establishes a baseline against which subsequent performance
can be compared. The process control activity is concerned with identifying and correcting
special causes of poor quality, to keep the process performing as intended. That is, it seeks
to maintain key quality parameters within pre-defined control limits. The process improve-
ment activity seeks to identify and rectify common causes of poor quality by making basic
changes in the underlying process.

Each of these activities requires different skills and may be performed by different organiza-
tional elements. For example, the quality assurance organization may be charged with
process control while a separate quality improvement team (such as a process group) deals
with process improvement.

98 CMU/SEI-90-TR-24

ACT PLAN

CHECK DO

DETERMINE EFFECTIVENESS

IMPLEMENT
SYSTEM CHANGE

EVALUATE

COLLECT DATA

DEFINE THE PROBLEM

STATE
IMPROVEMENT
OBJECTIVES

IDENTIFY
POSSIBLE CAUSES
OF PROBLEM

ESTABLISH
BASELINES

TEST CHANGE

•Identify opportunities for improvement
•Develop plan for improvement
•Take corrective action on common causes
•Pursue continuous improvement

MANAGEMENT'S NEW JOB

Figure B-2: The Shewart Plan-Do-Check-Act Cycle

The three activities of process management can be mapped to the SEI process maturity
levels (see Appendix A). The process definition step coincides with the Defined level, the
process control step corresponds to the Managed level, and the process improvement step
matches the Optimizing level.

From Figure B-3, one can get the impression that the process management approach ap-
pears to ignore the software product. In fact, product quality is an integral part of process
management; the software engineering process is defined around work products—they are
the interfaces between activities. Moreover, process performance is monitored in part by
looking at products. Examining the software quality functions in a mature process will clarify
this connection.

CMU/SEI-90-TR-24 99

Corrective &
Improvement

Actions

Performance
Data

(Plan) (Do)

(Act)
(Check)

Common Causes

Process
Improvement

Process
Control

Special
Causes

Process
Definition

Execution

Figure B-3: Process Management Approach

B.4. Software Quality Functions

Combining the historical view of quality technology with the process management approach
to quality improvement suggests that a fully mature software engineering process includes
seven quality functions (see Figure B-4):

1. Process definition

2. Product inspections

3. Process audits

4. Software quality control

5. Process quality control

6. Software design improvement

7. Process design improvement

100 CMU/SEI-90-TR-24

These functions affect both process quality and product quality, and responsibility for them
must be distributed throughout the software enterprise.12

Process
Control

Design
Improve-
ment

Quality
Control

Process
Improve-
ment

Product Inspections

Design Implement Test

Process Audits

Process
Definition

(Product)

Figure B-4: Software Quality Functions

B.4.1. Process Definition
Because the software engineering process is intellectual rather than physical, explicitly
defining that process—the steps, sequence, requirements, team composition, interfaces,
etc.—can be challenging. Process definition leads to process control and improvement.

B.4.2. Product Inspections
The simplest quality technology involves performing peer reviews and inspections of both
work in progress and final software products and documents. An inspection is a structured
technique for comparing a software work product against its specification and other quality
criteria [Fagan76]. Inspections result in corrections to software work products. Effective in-
spections require planning and training. Quantifying the results of inspections establishes a
basis for process control and improvement.

12Responsibility for facilitation rests with the process group.

CMU/SEI-90-TR-24 101

B.4.3. Process Audits
An audit of the software engineering process focuses on the adequacy of the methods,
tools, standards, and procedures in place in a project [Crawford85]. It also considers the
conformance of the project to the prescribed defined process. The actual processes may,
after all, depart significantly from the intended process. To be effective, process audits
should suggest corrections to the software engineering process. Process audits should be
oriented to improvement, rather than adversarial and oriented to problems. Poor quality and
productivity may signal the need for an audit. An evaluation or assessment using the
maturity model [TR23] can be considered a process audit.

B.4.4. Software Quality Control
Software quality control involves measuring the quality of a software work product and
determining the need for corrective action. For example, if reliability is less than required,
then rework and further testing must be performed [Currit86]. Often the customer will
specify acceptance criteria for software products. Alternatively, the software enterprise may
have internal criteria. These may be stated in terms of complexity, module size, reliability,
etc.

B.4.5. Process Quality Control
Once established, a software engineering process can be expected to perform at a relatively
constant level until some unanticipated problem or change occurs (a special cause of poor
quality). Tracking actual versus expected performance on a control chart can highlight
process problems [Gardiner87]. Once the software enterprise recognizes that performance
has departed substantially from expectations, the search for a cause can begin. Maintaining
process control means continuously correcting process problems.

B.4.6. Software Design Improvement
Until recently, hardware designers left many important product quality considerations to be
handled by manufacturing engineers. Because software does not go through a correspond-
ing manufacturing phase, the software engineer must deal with those producibility concerns
directly [Card90]. That is, the software system must be designed to be easy to implement
and maintain. This is in addition to satisfying the customer’s functional requirements.

B.4.7. Process Design Improvement
Once the process has been defined and controlled, management can turn its attention to
improving the underlying process. This can be done by simplifying the process and by in-
serting appropriate new technology. [Turner78] suggests five questions that should be
asked about each process element:

1. Is this activity necessary or can it be eliminated?

2. Can this activity be combined with another or others?

3. Is this the proper sequence of activities?

102 CMU/SEI-90-TR-24

4. Can this activity be improved?

5. Is the proper person doing this activity?

Initial process improvement efforts should be concentrated at leverage points: those ac-
tivities that require the most effort and produce the most problems (see, for example, Pareto
analysis in [Grady87]). Improvement actions should be evaluated in situ by studying their
effect on actual process performance.

B.5. Quality Improvement Teams

To be effective, responsibility for the quality functions described in the preceding section
must be distributed throughout the software organization. No single department has all the
skills and scope to deal with myriad issues. Management must provide leadership and dis-
seminate common goals to all levels of the organization [Deming82]. Coordination,
cooperation, collaboration, and communication within the organization can be facilitated by
properly structured quality improvement teams, such as process groups.

One team approach, about which much has been written, is the quality circle (QC). Quality
circles are voluntary groups of workers studying and trying to improve their own tasks. In
Japan, quality circles function as group suggestion programs. They are easy to implement
and inexpensive to operate.

Although the approach has been widely adopted in Japan, it has had limited success in the
U.S. [Lawler85], and the payoff from quality circles can be small. Because quality circles
typically are formed at a low level in the organization, they lack the resources to implement
major changes and can easily be ignored by management. Moreover, the homogeneity of
membership often limits the innovativeness of a quality circle. Serious process problems
often affect more than one task, so may be unsolvable by a single quality circle.

Overcoming these obstacles means recognizing four principles of team-building for
improvement [Persico89]:

• Management must be involved.

• Teams are social and technical entities.

• Teams require diverse skills and experience.

• Members need specialized training in process analysis, statistics, and problem
solving.

The software engineering process group concept is an attempt to adapt these principles to
software quality improvement. The result is a high-level, skilled team with dedicated
resources and a mission to make improvements.

CMU/SEI-90-TR-24 103

B.6. Conclusion

The quality movement is an international force. Its influence has begun to affect the way
software is developed and maintained. Many issues regarding the application of quality im-
provement principles to software engineering can be resolved only through experience. The
SEI maturity model of the software engineering process, assessment procedure, and
process group concept are tools that can help to install TQM in government and industry
organizations, where it can continue to evolve.

104 CMU/SEI-90-TR-24

CMU/SEI-90-TR-24 105

Appendix C: Candidate Action Planning Process: The
Search Conference

Marvin Weisbord, in [Weisbord87], Chapter 14, "Inventing the Future: Search Strategies for
Whole Systems Improvement," suggests a method for developing a strategic portion of the
action plan that could also be used to create the framework for the tactical action portion.13

That method—a search conference—is summarized here. It was selected because it
blends the excitement of visible improvements with the need for a written, formal plan for
implementing those improvements.

The result of a search conference is a shared vision of the future of software engineering in
an organization; this vision is recorded primarily in a strategic action plan. The plan, there-
fore, is not a study; it is a structured report on the future, on the expectations and method of
attaining that envisioned future.

Focusing on the future has several benefits:

• The focus removes some of the energy from the natural tendency to place
blame on those who are believed to be responsible for the current state.

• The future provides a rallying point. It is, after all, the future in which everyone
is interested. Improvements, by their nature, live in the future.

In a search conference, all the stakeholders gather off-site for several days. Trained
facilitators lead the group to discover and create their vision of the future. Before giving
more details about this activity, it might be helpful to describe what it is not: it is not a listing
of problems and corresponding solutions. These lists tend to be so long that they are over-
whelming. And the solutions are piecemeal, not systemic.

Rather, the conference is a search for, in Weisbord’s words, "images of potential, an image
of aspiration, a preferred future." Weisbord cites a 1979 study that reports that when people
plan present actions by working backward from what is really desired, they develop energy,
enthusiasm, optimism, and high commitment. Says Weisbord,

Search conferences excite, engage, produce new insights, and build a sense of
common values and purpose. They have been especially attractive to organiza-
tions faced with significant change: markets, mergers, reorganization, new tech-
nologies, new leadership, the wish for a coherent culture and corporate
philosophy. (p. 285)

According to Weisbord, the search conference is based on three assumptions:

1. Change is so rapid that we need more, not less, face-to-face discussion to
make intelligent strategic decisions.

13A similar method can be found in The Action-Training Approach to Project Improvement: Guidelines for the
Trainer, by Merlyn Kettering and Terry Dean Schmidt, U.S. Agency for International Development, Washington,
D.C., July 1987.

106 CMU/SEI-90-TR-24

2. Successful strategies...come from envisioning preferred futures. Problem
solving old dilemmas doesn’t work under fast-changing conditions. Each nar-
row solution begets two new problems. [Emphasis in original.]

3. People will commit to plans they have helped to develop. (pp. 285 - 286)

C.1. Organizing the Conference

A committee composed of the facilitator(s) and four to six potential participants meet to
decide on dates, place, schedule, and the menu for meals and breaks, along with participant
selection method, group tasks, and goals. They might select a theme, such as "Software
Development Here in 1995."

A group of 50 or 60 might be invited. A diversified group provides a high potential for crea-
tive and synergistic solutions, increased likelihood of follow-up, and more linkages outside
the department conducting the conference. The key is to involve only people who have a
stake in the sponsoring organization’s future. Any group important to implementation should
be represented. Top management always participates. The overriding guideline is diversity.

One effective schedule begins with dinner on Wednesday evening, followed by the first work
session. This makes for a fast start-up the next morning, the participants having had the
night to gather their thoughts for the next two days of meetings. This schedule provides yet
more time, the weekend, for reflection before returning to the pressures of everyday work.

C.2. The Conference

The participants first focus on the past: which significant events, technologies,
breakthroughs, and processes have had the greatest impact on the present state of the per-
sons participating, on the enterprise, on the industry as a whole, and on society at large?
Weisbord speaks of organizing the perspectives by decade, looking for patterns, meanings,
and emerging trends. The group can respond to the direction of some of these past events
as a way of discovering important—shared or not shared—values in an objective way.

The present is then dealt with from two perspectives: external and internal. Those forces
that impinge most on the enterprise from the outside are listed in priority order. Deciding on
the forces and their priority helps build teamwork; additional values surface. Then a list of
"prouds" and "sorries" is drawn up; this is the perspective from the inside. It is a list of those
things going on right now about which the participants feel good and bad. The group votes
on the "proudest prouds" and "sorriest sorries" as a way to mutually acknowledge the mis-
takes and shortcomings and to build commitment to do something about them.

Participants consider the future next. Groups are given a few hours to develop a rough draft
of a preferred future: the most desirable, attainable future five years hence. After the groups
have presented their visions of the future, each participant prepares three lists: suggested
actions for themselves, for their function or department, and for the whole organization. In-

CMU/SEI-90-TR-24 107

dividuals keep the list of personal actions for their own use. Departments review the lists by
function and develop departmental action plans. The conference steering committee—or,
better, top management—reviews the suggestions for the organization as a whole, yielding
the strategic action plan for the enterprise.

The result of the search conference, then, is a layered set of action items for process im-
provement, each set aimed at its appropriate level. Since the action items were developed
by the community of stakeholders, there is already an investment in their successful im-
plementation.

Weisbord reports:

I do believe that anyone who has attended one of these events remembers it for a
lifetime. The search conference links values and action in real time. It promotes
productive workplaces by using more of each person’s reality. It joins people who
need one another, yet rarely interact, in a new kind of relationship. It stimulates
creativity and innovative thinking. It offers a unique...springboard for planning and
goal setting. (p. 295)

These are probably the most difficult aspects of the search conference:

• Management may feel threatened by appearing to give up decision-making to a
larger group.

• The outcome depends upon facilitation. What if a few powerful individuals
dominate the conference? Who would contradict one’s supervisor in such a
meeting? Managing the participants, rather than managing the content, may be
the principal challenge.

• Convergence—or even enough agreement to enlist support—is not assured. In
fact, even the assessment results may come into question.

In the end, the decision to try a search conference is an issue of tailoring and reaching
consistency with the corporate culture, as must be done with other activities suggested in
this guide.

108 CMU/SEI-90-TR-24

CMU/SEI-90-TR-24 109

Appendix D: An Introduction to Technological Change

This appendix addresses the fundamentals of implementing technological14 change in
software organizations. The process group can greatly improve its odds for success if it
understands and acquires some skills in managing the technological and organizational
change attendant to process improvement.

This material is intended for software professionals. It is an introduction to the basic
knowledge that is prerequisite to effective and predictable technological change in the con-
text of software engineering. The field of management science, and in particular the areas
of organization behavior and organization development, are the primary sources for this
material.15

This appendix contains two sections. The first section, which is tutorial in nature, introduces
basic vocabulary and concepts. It is adapted from the lecture material in the course,
Managing Technological Change, developed by ODR, Inc. Through a licensing arrange-
ment, the SEI has taught this course to software professionals who act as change ad-
vocates and change agents.

The second section presents a discussion of information transfer, which we distinguish from
technological change. Technological change involves efforts internal to an organization and
implies adoption and everyday use of a technology. Information transfer involves systematic
access to "outside" technology to prepare for long-term, ongoing change.

D.1. A Brief Tutorial on Implementing Technological Change

Software engineering is such a new discipline that constant procedural and technological
change is a way of life in most software organizations. Perhaps because change is taken
for granted, it is not often specifically addressed. But change needs to be managed. At a
minimum, managing the process of introducing new approaches will make that process
more predictable, thereby reducing the surprises and thus the stress involved. Reduced
stress will help minimize negative impact on productivity.

The idea of managing a process such as change implies that there are predictable aspects
of that process that can be addressed. Some of these aspects are familiar, but because
they deal with the human side of change rather than with the technological side, they are

14As noted earlier, the term technology is used here and throughout the guide in the broadest sense of the
term. It refers not only to CASE tools and compilers, for example, but to project management, technical review
methods, and any other change that affects the technical aspects of how an organization goes about its
business.

15Resources include [Tornatzky90], an interesting and readable interdisciplinary survey of many aspects of
technology transfer, and the annotated bibliography included in [Przybylinski88], which was especially prepared
for software engineers and managers.

110 CMU/SEI-90-TR-24

often oversimplified and are not directly addressed by software engineering organizations.
When a technological change takes place, the following human changes may occur as well:
need for new skills and knowledge, gained either through training or on-the-job experience;
revised reporting schemes; redefined work roles and relationships; revised schedules and
deliverables; gain or loss of status. When these changes are carefully and systematically
addressed, the resulting plans become part of a project-like road map from the present state
to the new, desired state.

One way to begin to recognize these predictable aspects of change is by learning something
about the nature of change. The following sections provide concepts and vocabulary that
may be helpful.

D.1.1. Characteristics of the Change Process
In even the most effective organizations, evolving business conditions and technology can
create the need for change. The process of discovering and accepting the need for change
is called unfreezing. This process can be very distressing, because it can involve changing
carefully crafted and sometimes long-standing policies and procedures, and because it ap-
pears to be a move away from stability and equilibrium. People and organizations usually
change only when it is more painful to stay in their current condition than to accommodate
change.

Moving from a less desirable state to a more desirable state is called transition. The tran-
sition period is characterized by disequilibrium, during which the status quo undergoes al-
teration to incorporate new procedures and/or technology. High stress and reduced produc-
tivity are the norm, but disequilibrium can be minimized if the transition process is carefully
anticipated and planned. In the case of technological changes, such as adding new
software tools or procedures, it is especially important that transition planning address
changes to both the organizational and the technical environment. It is possible to reduce
the unpredictability of the transition period by preparing revised guidelines, offering training,
and running pilot efforts to test the change prior to broadly instituting it.

As new technology and processes become part of routine organizational behavior, equi-
librium is re-established. Some refinement of the use of the new technology may be neces-
sary during this period, but by the time refreezing—a refocusing upon the product rather
than the process—begins, the change should be generally accepted and tested. If an or-
ganization is planning a series of changes, it can soon begin to consider the next change
effort. If the change has occurred in a pilot effort, lessons from the experience can reduce
the disruption caused by subsequent similar changes. Although change efforts are dis-
cussed here as if they occur discretely, it is an oversimplification to say that change occurs
"one change at a time," especially in a field as new and dynamic as software engineering.
The fact that several—or even many—changes may be underway simultaneously is one
reason a process group is so important. This group can maintain expertise in change
management, and track and facilitate several changes simultaneously. It can also learn, on
behalf of the organization, from each change experience and transfer that learning to the
next change effort, gaining effectiveness and predictability each time.

CMU/SEI-90-TR-24 111

D.1.2. Key Roles in the Change Process
Successful change efforts are usually characterized by certain actions or roles taken by
people within the organization, as summarized below:

• Change advocate. The change advocate, sometimes known as the champion,
must be in place first. This is the person who sees the need for change ear-
liest, who can envision the effect of the change, and who can convincingly
represent and convey that vision to other members of the organization. The
change advocate often becomes a change agent.

• Change agent. When advocacy moves from proselytizing for change in a
general area of need—for example, software project schedule overruns—to im-
plementing a particular change, such as the use of cost-estimation models, the
person who implements change is called a change agent. An agent needs
resources and support in order to actually effect change.

• Sponsor. A person who can provide approval and resources to support the
agent is called a sponsor. The sponsor who allocates resources and supports
the beginning of the change effort is called the initiating sponsor. Other spon-
sors are called sustaining sponsors.

Typically a sponsor is a manager. The sponsor of a process group, for ex-
ample, should head the organization served by the process group. The spon-
sor of a change effort ought to be the manager of the organization that will un-
dergo the change. Both the process group and a particular change effort may,
however, need additional sponsors. For example, a steering committee is in-
stitutionalized sponsorship. The steering committee consists of managers
whose organizations will be affected by the changes advocated by the process
group, and the committee’s sponsorship is prerequisite to successful transition
of the changes. In another example, if the manager heading the organization
acquiring a new configuration management (CM) tool is not also in charge of
corporate CM software standards, the change agent may have to seek com-
plementary sponsorship from the standards organization.

Sponsors must exist at all affected levels of the organization. Here is the test
for adequate sponsorship: if a particular sponsor were no longer available,
would a particular change effort, or even the process group itself, be in
jeopardy?

• Change target. The organization (or individual) that will change is called the
change target. The size of the change target should be decided by the level of
available sponsorship, the resources that can be applied to the change effort,
the possibility and necessity of pilot efforts, and the breadth of application of the
new technology or procedure. (It may be difficult, for example, to use con-
figuration management on only part of a system under development.)

All roles are necessary, and they must be played in the right balance. [Bayer89] indicates
that neither upper-level management alone nor practitioner support alone bode well for a
successful adoption of new technology. The need for multi-level support is also discussed
in [Ebenau83] and [Leonard85].

112 CMU/SEI-90-TR-24

D.1.3. Frames of Reference
One of the most troublesome aspects of change is communicating the nature and implica-
tions of the change to those it will affect. And one of the most difficult aspects of com-
munication is bridging frames of reference. A frame of reference consists of ideas, theories,
beliefs, feelings, values, and assumptions which, taken together, allow people to meaning-
fully interpret experience. Frames of reference simplify the processing of the many stimuli
that bombard us constantly. Two familiar examples from outside software engineering are
labor and management frames of reference, and male and female frames of reference.
Both examples have provided many classic anecdotes of miscommunication. Software or-
ganizations may need to address the frames of reference of management, customers,
software engineering, systems engineering, hardware engineering, and different application
domains.

In the context of implementing new software technology, a common occurrence is a clash
between a manager’s frame of reference and an engineer’s frame of reference. For ex-
ample, management may see great value in improved cost estimation because it will allow
them to predict resources more effectively. Engineers may view this as added overhead
that takes time away from their "real" work, that of designing and building systems. Whether
or not a particular constituency views the change with favor, concerns and assumptions
need to be articulated and addressed. Very early in planning, the change agent (i.e., the
process group) should actively solicit responses to the proposed change. Informal inter-
views, meetings, and suggestion boxes (perhaps electronic) can be used to gather input.
The change agent must remain carefully open-minded, as often these responses hint at im-
plementation strategies and transfer mechanisms. Engineers faced with using a new cost-
estimation procedure may be concerned about its calibration to their work. An initial ar-
gument about the overhead required for the procedure may mask real technical issues that
must be addressed.

D.1.4. Resistance to Change
People resist change even if it is perceived to contribute to their own well-being. Change is
a digression and should be resisted unless its impact can be projected to be beneficial
within a reasonable period of time and the process of change can be reasonably orderly.

Individuals resist change for a variety of reasons. A new technology or procedure may
threaten their stature in an area affected by a proposed change. They may feel that the new
technology or procedure will make them and their jobs obsolete. They may be aware of a
negative impact a change could have on the organization’s product costs or delivery dates.
Or, very simply, they may prefer not to deal with a change in their usual work routine.

The key to successfully addressing resistance to change is to address each issue specifi-
cally, perhaps within a particular frame of reference. Particular attention should be paid to
the influential individuals—called opinion leaders—who feel strongly against or in favor of
the change. These individuals often can affect the plan for change in important ways. For
example, when a process group is preparing an operational-level action plan for a particular

CMU/SEI-90-TR-24 113

project, key members within that project should serve as sounding boards, providing specific
information about the "fit" between the plan and existing technology and practice. If tech-
nical working groups are organized, opinion leaders should be invited to join.

D.1.5. How Much Change?
Organizations, like people, are subject to stress. Too much or too rapid change creates
stress and jeopardizes the success of any change effort. It is not unusual for even a rela-
tively small change such as a new technical review process to take several months to imple-
ment [Ackerman83, Fowler86] considering time required for planning, technology selection
or procedure definition, actual change activities such as training and guidelines preparation,
and evaluation. Attempting to implement change too rapidly can result in large quantities of
rework, and usually is much more costly than doing it right the first time.

Introducing too many changes too quickly can also increase the risk of failure of a particular
change effort. Scheduling individual change efforts to allow enough time for a return to
equilibrium after each one allows an organization to continue to acclimate to changes com-
fortably and almost indefinitely.16

D.2. Technology Transfer

It is useful to distinguish technological change from the transfer of technological information.
For the sake of this discussion, the former is defined as what happens when a cohesive
organizational unit installs and adopts a new technology, and the latter is what happens
when technology becomes part of the knowledge base—although not necessarily part of the
skill set—of a technical community, be that an organization, an application domain, or a
broader community such as the embedded, real-time systems community. Technological
change and information transfer, mechanisms for which were discussed in Chapter 7, com-
prise technology transfer. This section provides a conceptual framework to show how these
two elements of technology transfer complement and support each other. The section
presents key aspects of technology transfer inside and outside the organizations, including
context analysis, transfer project selection, mapping of technology across contexts, and
boundary spanners—people who perform the mapping process.

The preceding section explained technological change as what takes place when a tech-
nology is carefully and purposefully implemented in a particular organizational unit. For ex-
ample, change is what happens when all software engineers in a program learn how to use
software inspections and begin inspecting code on a regular basis. Change is also what
happens when managers in a particular division agree on and begin to use a particular cost-
estimating tool routinely. Essentially, change occurs when a group of people whose work is

16While this might seem to preclude simultaneous change efforts, most software technology changes will
affect one group of engineers primarily, and others secondarily. If multiple change efforts are managed well, no
one group undergoes more than one major change at a time, and it should be possible to have several efforts
smoothly underway.

114 CMU/SEI-90-TR-24

closely related join together to learn about and implement a new way of working together
using a new procedure or technology.

If change were necessary only occasionally, the organization could muddle through the
process informally. But with the goal of ongoing software process improvement, and the
fact of constantly changing technology in the new field of software engineering, many such
changes may occur at once. It is critical, therefore, that an organization plan for these
changes, frame the ongoing change within a strong strategy and clear goals, systematically
facilitate the change process, and carefully monitor the changes that are underway. The
process group plays a key role and acts as a focal point in planning.

A process group could plan, successfully facilitate, and monitor a specific change effort
within an organization with the knowledge described in the previous section. Preparing the
strategy and long-term goals for ongoing change, however, requires a different perspective.
The process maturity model offers a scale by which to calibrate goals in terms of process
and technology. For example, an organization at the "repeatable process" level on the
maturity scale should "...introduce a family of software engineering methods and techniques.
These include design and code inspections, formal design methods, library-control systems,
and comprehensive testing methods" [Humphrey88]. These actions are part of moving
toward the next, or "defined process" level of maturity. Collectively, however, they represent
a massive, multi-year effort across a multiple-unit organization. The process group and its
steering committee need a way to decide which technology to implement when, the best
place to put it first, and then when to implement it more broadly. An understanding of the
dynamics of information transfer provides a basis for designing an action plan that will have
the greatest likelihood of success.

D.2.1. Context Analysis
Context is the set of all social and technical aspects of an environment. It includes every-
thing that surrounds and pervades the organization in which a technology will be im-
plemented, such as:

• Application domain

• Project size

• Organization software development standards

• Government software development standards

• Professional standards

• Software engineering process definition

• Economic and business conditions

• Budgeting practices

• Financial status

• Managerial style and reward system

CMU/SEI-90-TR-24 115

• Technical style and reward system

• Geography of organization locations

• Technological environment (hardware and software)

• Equipment for each software engineer

• Networking sophistication

• Availability of continuing education and professional training

• Homogeneity of staff

• Education and experience of staff

Some of these aspects are addressed as part of assessing the software process; others fall
outside the process assessment and need to be examined separately. For example, if train-
ing in software project management is considered critical to process improvement but there
is no precedent for it other than management development training for project managers, it
may be difficult to find a way to budget time or money for the training. Or, if the corporate
culture advocates using custom tools, the organization may resist purchasing an off-the-
shelf cost-estimation model even if ample funds are available. Context analysis is a useful
next step after process assessment in preparation for identifying tactics for specific process
improvement activities.

Context also includes the dominant frames of reference within an organization. Analyzing
context helps articulate these frames of reference so they can be explicitly addressed in the
transfer process. The greater the similarity between the native context of the change agent
and that of the change target, the greater the likelihood the change will succeed. The less
similarity there is, the greater the need to carefully analyze the context and examine all as-
sumptions [Rogers83].17 Context analysis can help clarify dissimilarities, provide criteria for
change agent selection, and anchor the planning of change in the specifics of the
organization’s situation.

Aspects of context that are outside the realm of influence of the process group and its spon-
sor need to be acknowledged and taken into account in planning, even when they cannot be
modified.18 For example, standards and policies that cannot be changed locally need to be
carefully considered. Often there are creative ways to work within the constraints. Limited
budget for formal education and training can be compensated for through judicious use of
libraries and through sharing knowledge by using simple mechanisms such as "brown bag"
seminars during lunch hours. Local upgrades of networking capability may be constrained

17Rogers defines the terms homophily and heterophily to describe the degree to which a change agent is more
like or less like the change target. [Rogers83] is one of the classics in the study of technology transfer.

18DoD standards are a good example here. However, if a standard limits an industry’s ability to upgrade
technologically, an organization may want to allocate resources to lobby with others for broader change, via
industry or professional associations.

116 CMU/SEI-90-TR-24

by a budgeting cycle, but a high-level sponsor’s help might be enlisted to find sources of
funds outside the local budget limits or cycle. Changes in reward systems may require
broad corporate initiative; local options can be enhanced by conscious attention to how the
corporate systems affect local practice. Managers typically have some discretion in using
existing systems; at a minimum, for example, they can exercise leadership and sponsor in-
formal celebrations to acknowledge a particular success. For each change attempted, the
context should be analyzed at enough levels to be sure that each way it affects the change
effort has been acknowledged and addressed. One approach to such an analysis is shown
in Figure D-1. Note that this diagram is greatly simplified: several categories of individuals
and functional groups are likely, and a chart should be made for each important category in
an organization.

Categories
of

Context

Equipment

Software
Development

Standards

Electronic
Communications

Capability

Education
and Training

Policy

Schedule

Co-location

Privacy and
Size of

Workspace

Professional
Homogeneity

Reward
System

Technical Business Cultural

Individual

Functional
Group

Organization

Area Affected

Figure D-1: Context Analysis

D.2.2. Mapping
Mapping is a simple but powerful way to determine whether a technology is likely to succeed
in an organization. The mapping process essentially involves: 1) examining the technology
to be implemented for aspects of context that have been built into it and 2) comparing
("mapping") the results of this examination to the results of the organizational context
analysis. If there is minimal overlap, the risk is high that implementing the technology will be
complex and unpredictable and will require more resources, especially in pilot efforts. If
there is a significant overlap, the chances of success are greater. The comparison should
take into account the fact that some aspects of context may carry more weight than others.

Context analysis is a useful step to take just prior to beginning a search for a technology. It
can help narrow the candidate field by noting major aspects of context, such as application
domain, technical compatibility, and budget, which would seriously constrain possible

CMU/SEI-90-TR-24 117

matches. Once the list is pared down to a half dozen or so technologies, mapping is a
major step in the final selection process.

Mapping (see Figure D-2) is necessary because all software engineering technologies are
based on a set of assumptions. Certain application domains or classes of application
domains—for example, real-time embedded, MIS, scientific—may be assumed when a tech-
nology is developed. Certain types of users—for example, ordinary citizen, engineer, scien-
tist, bank teller—may also be assumed. Certain technical requirements—machine type and
size, operating system, network type—are usually stated. The easiest technologies to
eliminate from a candidate list are those with the least overlap with the organization’s con-
text; as the list shrinks, the mapping process requires more detective work and attention to
subtleties such as software engineering terminology, life-cycle phase coverage and defini-
tion, and style of work in groups. Even a technology that is well targeted to a particular
market niche cannot take all variations of an organization in that niche into account. The
best test of a new technology is a series of pilot uses, thoroughly evaluated.19

Software
Design

Technology

Application
Domain

Industry
Segment

Company Division Program Project

Figure D-2: Mapping Technology

Mapping is less critical with a more mature technology such as UNIX; the technology has
been used in many different contexts and a body of experience exists. Many books are
available, and user organizations and conferences provide ongoing access to the ex-
perience base. Newer technologies such as Ada and reuse are not yet mature in this
sense. Nor are "softer" technologies such as technical reviews and software metrics. In
these cases, successful technology implementation depends predominantly on people and
people-based mechanisms such as sponsorship, training and education, articles and con-
ference presentations, and consulting. Even with books such as [Grady87] providing excel-
lent "how-to" advice, success is still heavily dependent on the "right" people using that ad-
vice. The same is true even for computer-aided software engineering (CASE) tools, despite
the burgeoning marketplace. [Martin88] notes the need for a new position, a CASE ad-
ministrator, to institutionalize expertise. Without such a person, designers using the tools
must perform design and process improvement in parallel with system design.

19A very useful discussion of the "mutual adaptation" of organization and technology, which must occur for
successful technological change, can be found in [Leonard88].

118 CMU/SEI-90-TR-24

When an organization is dealing with newer and softer technologies, mapping becomes criti-
cal. If transfer mechanisms are people-based, they are heavily influenced by frame of refer-
ence and by the skills of the people who must translate between frames of reference in the
transfer process.

D.2.3. Boundary Spanners
Boundary spanners are people who are comfortable in multiple frames of reference; they
can work effectively as members of a business organization, with management and en-
gineers, and on professional society committees. Examining the process of communicating
in different languages provides a useful analogy to the services boundary spanners perform.

Because the mapping process is similar to translation between languages, it is best done by
boundary sponsors who are the equivalent of multi-lingual. If these people have extensive
experience in translation, they will know when to proceed cautiously; they will understand
the need, for example, to define carefully terms that most people will assume are well under-
stood.

Boundary spanners are common outside organizations in the technology advocate roles
described in Figure D-3. These boundary spanners play an important role in getting new
products from research into the marketplace, in articulating the new technology in univer-
sities and professional communities, in marketing the technology once it becomes a product,
and in supporting new users. They use many of the transfer mechanisms we have dis-
cussed in this guide. Marketing people in particular have important skills in combining
various transfer mechanisms to support systematic change.

Technology
Users

Pull

What are the solutions? What are the problems?

Push

•Universities
•Vendors
•Government Labs

•Marketers
•Industry Associations
•Professional Societies
•Educators
•Consortia

•Internal Software Process
Groups
•Internal Software Tool
Committees
•Industry Analysts
•Consultants
•Consortia

•Industry
•Government
•Academia

Technology
Receptors

Technology
Advocates

Technology
Producers

Technology Delivery
 Systems

Figure D-3: Boundary Spanner Roles

CMU/SEI-90-TR-24 119

The functions performed by change agents usually have not been replicated inside or-
ganizations. This must change, first, because the problems that exist in the outside world
also exist in microcosm within all organizations interested in, and needful of, technology
transfer and change to support efforts such as software engineering process improvement.
Secondly, boundary spanners, or technology receptors, working on behalf of an organiza-
tion, are necessary for reasons of symmetry and interface to the outside world. These are
critical issues and, together, are the reason a process group is an essential part of the
change process for software organizations.

Boundary spanners working on behalf of an organization represent that organization’s
problem set. They are needed to provide symmetry with those working on behalf of tech-
nology, the solution set. The symmetry in this case results when a group of people act on
behalf of the organization, and serve to map (translate) as well as filter technologies from
outside.

The filtering process is implicit in the process of mapping; however, it deserves explicit dis-
cussion. Boundary spanners focus both on the internal transfer process and on the outside
world. In fact, in many ways they sit on the "surface" of the organization. In their role,
boundary spanners typically serve on technical working groups or as members of the
process group "porting" technology experience from one organizational group to another;
they connect the inside of the organization to the outside world. They track technology
directly [Carlyle88]; they may also track it by serving on outside working groups such as the
IEEE Computer Society standards committees. Having largely internalized context analysis
results for their own organization, they effectively scan for and select candidate
technologies.20 People who perform this role best have had experience in a number of
contexts; criteria for boundary spanners are much the same as for members of process
groups.

Without boundary spanners to act as a filter, naive users are confronted directly with new
technology. They may be unskilled at either the boundary spanning work of technology
selection or at implementing technological change. Mistakes made here can be costly. In
the absence of the filtering function provided by experienced boundary spanners, the or-
ganization is bombarded directly and randomly with opportunities to adopt technology.
Selection is not made carefully, and failure is often the result. Boundary spanners are espe-
cially necessary in a new field such as software engineering, where technology is often im-
mature and changes constantly. They are, in a sense, acting as advocates for the con-
sumers of new technology within their organization.

20It is the job of the process group and steering committee, however, to take the broader view; the process
group members, having worked with many projects, and the managers, also having done so and having had
management experience and being able to represent concerns of the organization, must determine how all the
technologies brought back by various categories of boundary spanners fit together and serve together for the
greater good.

120 CMU/SEI-90-TR-24

CMU/SEI-90-TR-24 121

Appendix E: Training and Education

"If you think training is expensive, try ignorance." - Derek Bok, Harvard University

Training and education can be powerful instruments for change. For the purpose of this dis-
cussion, education refers to the process of providing information—especially concepts and
theory—about technology, while training refers to providing skills in the use of a technology
or procedure.

Education of those who will participate in the change initiates the unfreezing process (see
Appendix D) and is prerequisite to implementing actual change. Motivation to acquire infor-
mation through education or other means may come from shifts in business conditions or
from new technology that makes it necessary to consider change. Key employees, both
managers and technical staff (especially those in working groups), need to get enough infor-
mation about a new technology or set of procedures to determine its applicability to their
situation. Their education should include a description of the new technology or procedure,
its use in similar applications elsewhere, and estimated costs and benefits. Since sponsors
and key people in the target organization need information as input to decision making prior
to beginning any change, education of this sort should occur very soon after it appears that
change may be needed. In fact, an ongoing strategy to provide information continuously
may be needed; this is discussed at greater length in Chapter 7.

Once a technology is selected for a specific improvement activity, new skills must be
provided to those who will use the new technology. Training—instructor-led, embedded,
video-based, or any combination—can efficiently provide these skills. The training must
take place no more than one or two weeks prior to the initial use of the technology and
should take place after any new technology has been acquired and installed by support
staff.

Thus, the need for training must be identified early, as part of the action planning process.
At the same time, certain training-related activities should begin, such as preparing course
descriptions and selecting vendors. The training itself must occur "just in time" for people to
acquire the necessary skills.

E.1. Sources of Education and Training

The process group does not necessarily develop or provide education and training relating
to process. The group is, however, responsible for the provision of both. The current state
of the market supply is such that the training and education needed for process improve-
ment procedures and technology is often not available in a form suitable for immediate use.
Thus, the process group, working with members of technical working groups, may need to
tap both internal and external sources of appropriate instructors, course developers, and
materials.

122 CMU/SEI-90-TR-24

E.1.1. Internal sources
There may already be an internal training or education organization that provides engineer-
ing skills development and/or continuing education. Such an organization can support the
process group’s efforts with course development, delivery, and acquisition services. Even if
the process group must prepare and deliver or acquire its own courses, the internal training
and education organization should be kept apprised of these efforts.

Internal training and education organizations may be good sources of courses, if the
courses can be tailored to suit the needs of particular improvement activities. Education and
training will be most effective when tailored to suit the specific technical context in which the
technology will be used; working group members and pilot project participants can assist in
the tailoring process. Course material should provide examples from contexts similar to the
one in which the technology is targeted for use. For example, if the targeted context is
embedded software systems, examples might come from telecommunications, medical in-
strumentation, or aeronautics. Training materials should provide exercises to build skills,
knowledge, and confidence; they should use languages and concepts familiar to the stu-
dents (for example, Ada code inspections should not be taught with Pascal or C language
examples).

Survey courses or general-purpose courses on broadly used programming languages and
computer systems are most commonly available. These may need revision in order to
provide answers to questions about the application of a technology or process in a specific
project. The process group should be prepared to negotiate the tailoring of existing courses
and to supply or help find resources for developing or acquiring and teaching new courses.
Education and training are not the entire change process, as noted earlier, but are so impor-
tant that the process group should be prepared to invest a significant percentage of its ef-
forts in obtaining, providing, and maintaining appropriate training and education.

Technical working group members are valuable resources. They can help determine which
education and training to offer, help tailor the material, and act as sources of expertise to
supplement formal courses. Working group members can also be enlisted to attend poten-
tially useful courses and evaluate them, and to provide informal tutorial and related consult-
ing services. If the need for education or training is short term and for limited numbers, this
can be an adequate overall solution. Otherwise, it can be used as a stop-gap measure until
more suitable arrangements can be made.

E.1.2. External sources
If internal training and education sources do not exist, outside sources such as universities
and vendors can be used. More and more commonly, universities are involved in continuing
engineering education; and often, in addition to generally available courses, there are faculty
who can be engaged to develop and deliver training and education courses. Some training
vendors will contract to develop original courses or to tailor the courses they routinely offer.
The same suggestions that apply to working with internal sources apply here.

CMU/SEI-90-TR-24 123

Whether vendors or university faculty are being considered, it is important to select carefully.
University faculty may not be accustomed to writing or tailoring courses that focus on skill
building. Vendors who offer to tailor and provide "hands on" exercises should be asked for
examples. In either case, the process group must be prepared to negotiate and pay for
these additional services. Note that references should be checked. References can provide
information on how easy a particular supplier is to work with, the quality of the supplier’s
product, lead time required, typical follow-up activities, and cost.

E.1.3. Acquiring Course Materials
The first step in any system development effort is requirements specification, and course
development is similar to software development in many respects. The process group
should be prepared to provide a specification for courses it wants, even when it is attempt-
ing to use internal and existing courses. The specification can be the result of an assess-
ment or other formal needs analysis. It should include a description of the number and
types of students who will take the course, the context of course use (it is part of the process
improvement effort), the timing of the course offering(s), and the length of time students can
be away from their work. It should also specify behavioral or attitudinal objectives (for ex-
ample, "On completion of this course, the students will be able to moderate code inspec-
tions," or, "On completion of this seminar, the managers who attend will be able to sponsor
a pilot test of configuration control technology"). Course suppliers should respond to the
specification in writing and should identify course prerequisites and describe the student
background and experience that is expected.

Course development that results in consistency of delivery independent of a specific instruc-
tor is a labor-intensive process. It can require up to 100 staff hours of effort for each class-
room hour,21 including workshop and exercise time, especially if a text does not exist. This
approach assumes that instructors who meet certain basic prerequisites can be found or
trained, and it provides for the creation of course materials and notes for both student and
instructor. Lower effort figures may be possible if instructors have both extensive subject
matter expertise and course development experience. Courses to be delivered in certain
media take longer to develop in exchange for appealing to a wider audience or having
broader distribution possibilities; a course using interactive video disk can take hundreds of
hours of development time per course delivery hour.

If the course will be taught many times, the high front-end investment in a well-designed and
documented course that can be taught by a number of different instructors may be cost-
effective. Reputable suppliers will provide details on how courses will be developed and
tailored in accordance with the level of detail in the course specification.

21This is the experience of a number of SEI technical staff who have developed courses.

124 CMU/SEI-90-TR-24

E.1.4. Criteria for Selecting Materials
Materials and providers should be selected carefully, considering the investment in the
development or outright acquisition of educational and training materials, students’ time
away from regular work assignments during in-class time, and the importance of education
and training in the process improvement effort. The following questions should be helpful:

• Fit. Do the content, approach, prerequisites, and course objectives fit the re-
quirements?

• Flexibility. What is the extent to which materials can be used with a variety of
audiences and instructors? What materials are provided? How are they kept
up to date?

• Tailorability. How readily can all the materials be customized for individual
project needs? Is the course designed to be customized?

• Track record. Is there an objective way to evaluate past performance with
these materials/courses? Can you examine student and instructor feedback
from previous offerings?

• Practical. Will the material/course impart skills, or are they general overviews?
Are there "hands-on" exercises?

• Modularity. Is the material packaged so that it can be learned in sections
based upon student background, interest, need (i.e., level of expertise or skill to
be obtained), and time available?

CMU/SEI-90-TR-24 125

Appendix F: Action Plan Guidelines

The action plan, as discussed in Chapter 3, is actually a set of plans and guidelines. It
includes a strategic plan and a two-part set of tactical plans, one containing guidelines for
preparing operational plans, and the other, a set of operational plans derived from that
guidance. This appendix offers direction in creating these sections of the action plan.22

F.1. Strategic Plan

F.1.1. Introduction to the Strategic Plan
Explain the intent of the plan and the policy that has motivated it. Give references for any
policy documents and spokespersons.

Give a brief history of assessments and other events leading to the development of the plan.
Cite any documents from those activities. List the types and positions of the participants.

F.1.2. Overview
Explain how the strategic portion of the action plan provides an overall framework for
software engineering process improvement efforts. Use the diagram in Figure 3-1 in Chap-
ter 3.

Explain that the strategic portion of the plan will provide answers to the following questions:

• What are our goals in beginning a major software engineering process improve-
ment effort?

• What is our motivation to improve?

• What have we assumed?

• Who is directly responsible and how will we work together?

• How will we know when we succeed?

• What are we going to do to begin improving our software engineering process?

• How will we continue to improve?

F.1.3. Process Improvement Goals
List the strategic goals that have been developed as a result of the assessment.

22This material was aided by references to [Gessner84], [Mason81], and [Schmidt87].

126 CMU/SEI-90-TR-24

F.1.4. Motivation
List the principal motivations that will drive the change effort. Use terms that are specific
enough to enable people to understand what motivations are appropriate. Be clear about
the need to improve.

F.1.5. Assumptions
List critical assumptions, describing how each affects the plan.

Discuss the risks implied by this set of assumptions.

F.1.6. Organizing for Process Improvement
Explain the functions of new organizational entities created in support of the process im-
provement efforts. The reader should be able to determine whom to ask a question of,
submit an idea to, or give feedback to. Use Figure 3-3 and text from Chapter 3 as needed.
Explain the following:

• The role of the executive sponsor and what resources he or she has committed.

• The role of the steering committee and how members are chosen.

• The role of the working groups and how members are chosen.

• How projects will participate in specific improvement efforts.

• The role of the process group.

F.1.7. Responsibility Matrix
Note that the steering committee will cross organizational boundaries to support the working
groups in their implementation of software engineering process improvements.

Identify the final approving authority of the working groups.

List all process group coordinating activities with both working groups and the steering com-
mittee.

List all working group responsibilities.

Use Figure 3-2 as the basis for a matrix listing responsibilities, including approvals and
reporting structure.

F.1.8. Criteria for Success
Describe how to measure and evaluate the success of improvement efforts at both the or-
ganization and the project levels. It would be helpful to tie this to the motivation for change.

CMU/SEI-90-TR-24 127

F.1.9. Improvement Agenda
Describe the agenda for improvement that was developed as a result of the assessment and
other data gathering activities. This should include any technical areas—configuration
management, cost and schedule estimation, technical reviews, CASE—and organization-
wide study efforts in areas such as software engineering training and education. The
process group itself is an agenda item. If it already exists, the item might state how it will
improve. If not, this agenda item is a statement chartering the process group. Other
agenda items might note the need for working groups to support some of the process
group’s efforts; for example, research into useful metrics might be a joint effort of the
process group and a working group prior to beginning to develop the process database and
attendant procedures.

List the agenda items in priority order with the name of the responsible person or group.
Note that the charter for each will be available in the tactical section of the action plan.

F.1.10. Guidelines for Planning Improvement Projects
Describe here the guidelines for planning specific improvement projects. Note that project
teams are supported in this planning effort by members of the appropriate technical working
group, the process group, and the steering committee, all of whom may join together in a
planning workshop. Collectively, and prior to beginning detailed planning, this group should
be able to answer all the questions listed in Chapter 6 about a new technology and the
process of putting it in place.

Planning workshops should address five areas:

1. Project activation. Ensure that the project has met all legal, administrative,
and bureaucratic requirements and is ready to begin operations.

2. Project organization. Plan how the project organization will function, clarify
roles and responsibilities, and develop operating procedures.

3. Schedules. Agree on specific project goals and objectives, then establish
realistic plans, budgets, and schedules.

4. Resources. Establish procedures for ensuring that the key project resources
(money, people, training, and equipment) are available when needed.

5. Information and control system. Identify information needs, select
measures and indicators, and establish a useful monitoring and reporting sys-
tem.

The above process is iterative. The tasks can be completed in other sequences, but none
of the five major steps can be neglected or the project will rest on a weak implementation
foundation. At the end of the workshop, the participants will have prepared written plans,
budgets, schedules, and responsibility descriptions to guide the implementation of specific
process improvements. The planning workshop produces specific results and also builds
team capacity for planning future improvements.

128 CMU/SEI-90-TR-24

F.2. Tactical Plan

F.2.1. Introduction to the Tactical Plan
Note here that there will be several types of tactical plans and related guidelines. The con-
tent of the plans for the process group and the steering committee will differ to some extent
from that of working groups in technical areas. Also, the plans for technical areas will con-
tain material to use in creating a detailed operational plan for a specific improvement effort
in that area.

CMU/SEI-90-TR-24 129

There may be quite a few tactical plans and instantiations at the operational level. These
need not be kept in one document. Each working group can maintain its own, keeping the
technical library and process group informed of the date and location of the latest version.

The content of the tactical action plan is divided in two parts (refer to Figure 3-1 on page
30):

Part 1

• Working group charter.

• Plan for the review and selection of appropriate technology.

• Plan for the development of an operational plan template that supports the
technology and transition approach.

Part 2

• Template for the operational plan.

• Guidelines and examples for completing the template.

• List of completed templates.

• Lessons learned from projects using these templates.

• List of contacts in the working group(s) and in projects with relevant experience.

F.2.2. Tactical Planning for Technical Working Groups

F.2.2.1. Technical Working Group Charter
Reference the agenda item in the strategic plan that will be implemented by this working
group.

List the working group’s responsibilities and functions. For technical working groups, these
typically are (at a high level):

• Screening new technology, or technology new to this organization.

• Making recommendations on new technologies to pilot.

• Planning, in harmony with the process group, for the transition of new tech-
nologies from evaluation to pilots to broad usage.

• Participating in outside working groups (professional society or industry).

• Attending conferences and workshops related to this technical area.

• Organizing workshops and seminars inside the organization to pass along high-
lights and/or technical details about new technology.

• Contributing technical evaluations or trip reports to internal newsletters.

130 CMU/SEI-90-TR-24

• Consulting with projects beginning to use a new technology in the working
group’s area.

• Reviewing papers for internal and external conferences in related areas.

• Working with the process group to design plans for improvement projects re-
lated to this technical area.

• Assisting with the execution and evaluation of these projects.

• Preparing templates to be used for operational plans, along with guidelines for
and examples of their use.

Describe the level of management commitment to these functions. Note the name of the
management sponsor(s) if other than the steering committee.

F.2.2.2. Template for Improvement Activity Plan
Note that this template is to be used to guide the development of a plan for a specific im-
provement activity, and that each template will differ, depending on the technical and ad-
ministrative aspects of the activity.

Most templates will have the following entries:

• Statement of why the particular organization is adopting a new technology or
procedure, citing related policy and needs analysis activities and reports, noting
goals and objectives, and describing criteria against which success will be
measured.

• Description of the technology or procedure to be adopted, along with a list of
reference material and sources of expertise.

• Description of any enabling technologies or procedures required.

• Description of the source of technology or procedure itself and attendant ser-
vices, such as education or training, consultants, and installation.

• Description of purchase procedures for both the technology or procedure and
any enabling technology or procedure.

• Description of plans for tailoring the technology or procedure, and the technical
or administrative environment that will receive it, as well as related materials
such as user documents.

• Description of plans for educating management and practitioners about the new
technology or procedure and the reason for its adoption; description of related
training for those who will need new skills.

• Description of technology selection procedure, if applicable (some working
groups may select two or three suppliers for a particular technology).

• Description of how the improvement activity will be evaluated, and how status
of both adoption and evaluation will be reported.

• Schedule of all the above activities and a list of responsible individuals.

CMU/SEI-90-TR-24 131

F.2.2.3. Guidelines for Completing the Template
Write guidelines for completing the template (a good way to approach writing these is to do
the first several plans without a template, derive the template, and then convert the lessons
learned in writing the plans into guidelines). Refer to the sources listed below for completed
templates that can be used as examples. Note the possibility of doing this work in an im-
provement project planning workshop.

Because each improvement activity is a project, the IEEE Standard for Software Project
Management [IEEE-PMP88] is a useful guideline for creating improvement activity plans.
All sections will not apply, but most will, and the use of this standard helps prevent omission
of key information.

F.2.2.4. Example of Completed Templates
Include here at least one example of a completed template.

F.2.2.5. List of Completed Templates
List the locations of completed templates created by similar improvement project work.

F.2.2.6. Lessons from Experienced Projects
Include here (if brief, otherwise list sources) descriptions of lessons learned by others in the
process of planning and executing improvement projects.

Provide a checklist of questions to answer to capture lessons learned from this improvement
project.

F.2.2.7. List of Contacts
Project Contacts: List the names, phone numbers, and electronic and physical addresses of
others who have participated in similar improvement efforts and who are willing to serve as
resources.

Working Group Contacts: List the same for working group contacts who can provide exper-
tise or services in this technical area.

F.2.2.8. Record of Working Group Meetings
Include dates, chairpersons, attendees, minutes.

F.2.2.9. Record of Working Group Activities
Briefly summarize each activity—workshop, newsletter contribution, demonstration, seminar.

Note for each activity the date, attendees, and the agenda (if the activity was a meeting).

Note any future plans.

132 CMU/SEI-90-TR-24

F.3. Tactical Planning for the Steering Committee

F.3.1. Steering Committee Charter
Describe the purpose of the steering committee and how it will oversee and support various
process improvement activities.

Describe its relationship to the process group and the working groups.

List its members; describe how members are selected and how they retire.

Give the name of the committee’s executive sponsor.

F.4. Tactical Planning for the Process Group

F.4.1. Process Group Charter
Describe how the process group acts as a focal point for software engineering process im-
provement. Mention the functions it serves:

1. Coordinates all self-assessment activity.

2. Coordinates all action planning activity.

3. Coordinates all working group activity.

4. Acts as secretary to steering committee, keeping it informed, setting meeting
agendas, keeping minutes.

5. Recommends new working groups.

6. Maintains expertise in the implementation of new technology, and consults in
same during process improvement projects.

7. Maintains the process database.

8. Provides process consulting.

9. Integrates the "big picture" across all improvement activity and reports on this
to working groups and the steering committee.

10. Coordinates training and education related to process improvement.

11. Maintains the process improvement library of meeting minutes, lessons,
references, proceedings, etc.

List process group members, how to reach them, and, if possible, their particular expertise.

CMU/SEI-90-TR-24 133

Appendix G: Summary and Analysis of SEPG
Workshop Data

Introduction
At its 1989 SEPG Workshop, the SEI created and administered an informal questionnaire
for gathering information about process groups represented by workshop attendees. This
was done at the request of the attendees, who indicated they needed the information for
briefing their management on what other organizations were doing. Figure G-1 shows the
questionnaire.

What follows is a summary and limited analysis of the data submitted for all the questions.
Of 22 questionnaires, 20 were usable; that is, they were submitted by a representative of a
process group that was already established, even if very new. The questionnaire was in
every sense of the word a prototype: rough and not scientifically validated, but developed to
get a quick sense of the process groups represented at the workshop.

134 CMU/SEI-90-TR-24

Summary of SEPG Data From Attendees
2nd Annual SEI SEPG Workshop

June 21 - 22, 1989

1. What is the number of full time equivalent people assigned permanently to the SEPG?
(How many personnel are you allowed? How many do you have now?)

2. What is the number of full time equivalent people assigned on a rotational basis to the
SEPG? (How many personnel are you allowed? How many do you have now?)

3. If your SEPG is not full time, how many people are assigned and for what percentage
of their time?

4. Do you have working groups for technical areas (reuse, Ada, education, etc.) or other
special planning functions? Please list each one and note how many people participate
for how much time how often. Please note the approximate date of origin of each group.

5. What is the date of origin of your SEPG?

6. How many software professionals do you serve?

7. Are you a corporate process group or are you focused just on one division? Please
briefly describe the organization(s) you serve.

8.Do you have corporate, division and middle management sponsorship? Please relate
the answer to this to question 7's answer.

9. Describe what special activities/planning you did to get started and how long these took
for how many people.

10. List your near term tasks.

11. List your long term tasks.

12. How many geographic locations do you serve?

13. What are the key accomplishments of your group to date?

Figure G-1: Questionnaire Administered at the 1989 SEPG Workshop

CMU/SEI-90-TR-24 135

Results: Questions 1 - 3

Figure G-2 summarizes the results of Questions 1 through 3. Of the 20 process groups, 14
were at their allowed staffing level; 6 were below. The largest group was allowed 20 full-
time equivalent (FTE) staff; the smallest had no full-time members at all, but rather 5 people
at less than 5% of their time. Only about one-third used rotational personnel. Ten process
groups used only full-time staff, 6 used only part-time staff, and 4 used a mix of both full-
time and part-time staff.

FTE* Allowed FTE Have Now
FTE

Rotators
Allowed

FTE
Rotators

Have Now

No. FTE No. SEPGs No. FTE No.SEPGs No. FTE No. SEPGs No. FTE No. SEPGs

0

.8 - 2

3 - 4.5

5 - 7

9

20

1

5

5

7

1
1

0

1 - 2

3 - 3.5

5

6 - 7

1

6

6

3

4

0

1 - 2

3 - 4

5 - 6

13

2

3

2

0

1 - 2

3 - 4

5 - 6

13
3

2

2

Average = 4.73 Average = 3.39 Average = 1.2 Average = 1.1

*FTE = Full-time Equivalent Staff

Figure G-2: SEPG Staffing

136 CMU/SEI-90-TR-24

Results: Question 4

Figure G-3 lists types of working groups noted by respondents and the number of process
groups having each type. A total of 37 working groups were reported. Most had been in
existence at least briefly, but a few were listed as planned. Four SEPGs had no working
groups; 2 SEPGs had only one, and the remainder had two or more (see Figure G-4). Eight
SEPGs had working groups in the area of training and/or education; 7 had working groups in
Ada.

We speculate that, because of the differences in naming working groups, more types are
listed here than actually exist. For example, two process groups mentioned metrics as an
area where they had working groups; other categories that might be predominantly metrics
work are "availability," "process database," and "cost/size/schedule estimation." If these
categories are added together, five SEPGs have working groups in the general category of
metrics. Likewise, if "software engineering process" is combined with "standards/policies/
procedures," which seems very similar, five SEPGs have working groups in that category.

Technical Area

No. of SEPGs with
working groups in

that area

Training/Education
Ada

Standards/Policy/Procedures
Cost/Size/Schedule Estimation/Tracking

Reuse
Environments

Metrics
Tools and Methods

Software Engineering Process
Software Technology

Requirements Engineering
Process Database

PC communications
Availability
Simulation

None

8
7
4
3
3
2
2
2
2
2
1
1
1
1
1
4

Figure G-3: Technical Working Groups

CMU/SEI-90-TR-24 137

The data on working groups raised some questions. With as much apparent activity in the
CASE area as appears from informal feedback to the SEI and from both technical and busi-
ness literature and magazines, it was surprising that only two groups listed tools and two
listed environments. Several process groups noted that they had full-time "working groups."
They are included in the count, but it is questionable whether they really fit the definition.
Perhaps tools, environment, CASE, etc., are not mentioned more frequently because these
areas have already become established as permanent parts of the organization. It would be
interesting to know how people chose which working groups to establish, and to what extent
process groups have played a role in originating and facilitating working groups.

0
1
2
3

4 - 5

6
2
9
2
3

No. Working Groups No. SEPGs

Figure G-4: Summary of Working Group Data

138 CMU/SEI-90-TR-24

Results: Questions 5, 6, and 12

Over half (11) process groups were 8 months old or less. The balance ranged in age from
more than 8 months to 5 years (see Figure G-5).

Age No. SEPGs

≤ 8 months
< 2 years

2 - 3 years
4 - 5 years

11
3
4
2

Figure G-5: Age of SEPGs

The number of software professionals served by the process groups ranged from 100 to
3500. Most groups served 500 or fewer (see Figure G-6).

No. Professionals No. SEPGs

≤ 250
300 - 500
600 - 800

1000 - 2000
3000 - 3500

7
5
2
5
2

Figure G-6: Number of Software Professionals Served by SEPGs

A finding was anticipated: a relationship between the age of a process group and its size as
a percentage of the population it served, the theory being that SEPGs prove their worth over
time, and older groups should therefore be a larger percentage of the number of profes-
sionals they serve. No such relationship was found.

CMU/SEI-90-TR-24 139

Most process groups served one or fewer locations (see Figure G-7). The size of the
groups did not, however, increase with the number of locations served. Considering the
increase in the number of interfaces that accompanies the increase in locations, this is
surprising. It probably indicates that the SEPG staffing level is effectively lower than the
percentage of staff served would indicate.

No. Locations No. SEPGs

1
2 - 4

10 - 15
> 25

10
8
3
1

Figure G-7: Geographic Locations Served by SEPGs

140 CMU/SEI-90-TR-24

Results: Questions 7 and 8

Questions 7 and 8 looked for information on the type of organization served and related
sponsorship issues. The inquiry was whether process groups worked at a corporate or a
division level (or some other level), and to what extent they had management commitment.
Figures G-8 and G-9 show the results.

Corporate (C) or
Division (D) SEPG

Sponsorship

Corporate Division Management

D
D
C
C
D
C
D
D
D
D
D
D
C
D
C
D
D
C

other (large project)
D

*
*

*
*
*
*
*
*
*
*

*
*
*
*

*
*
*

*
*
*

*
*

*

*
*
*

*

*

*

*
*

*

*
*
*
*

*

*

*
*

†

†Middle Management

Figure G-8: Level and Sponsorship of SEPGs

CMU/SEI-90-TR-24 141

Thirteen process groups worked at the division level and had two or three levels of sponsor-
ship. The caveat here is that the term division may be not used consistently by all respon-
dents. Also, terms such as sector, group equivalent, and lab were considered in our
analysis to be equivalent to division, but may not actually be equivalent.

All SEPGs

Corporate SEPGs only

Division SEPGs only

 1 level
 2 levels
 3 levels

 1 level
 2 levels
 3 levels

 1 level*
 2 levels
 3 levels

* the SEPG that served one large project had one level of
sponsorship

SEPGs Sponsorship

5
10

5

1
4
1

3
6
4

Figure G-9: Summary of Level and Sponsorship of SEPGs

142 CMU/SEI-90-TR-24

Results: Question 9

Question 9 asked how people got started in their process group and related work, and what
human resources were needed. The most frequently taken action was an assessment of
some sort. Five process groups did a self-assessment after SEI training. Two groups con-
ducted SEI-assisted assessments. Two others had assessments of another sort. After as-
sessment, the next most common initiating actions were planning (action, strategic, SEPG
charter, other) and establishing working groups, task forces, networks, or tiger teams.
Negotiation with management was mentioned by three process groups; it is likely that there
was much more of this but that it was not mentioned because it was taken for granted.
Figure G-10 lists all initiating actions and the number of process groups that performed each
one.

Action
No. SEPGs

using

Assessment (self, SEI-assisted, other)
Planning

Task force, working group, tiger team
Organization changes

Negotiation with management
Competitive analysis

Training (other than self-assessment)
Software engineering conference for managers

Pilot Project

9
7
7
4
3
1
1
1
1

Figure G-10: SEPG Actions to "Get Started"

CMU/SEI-90-TR-24 143

Results: Question 10

Software engineering process groups were involved in a wide variety of near-term tasks, as
listed in Figure G-11.

Task No. SEPGs

Software engineering policies, procedures,
standards, manuals

Metrics program or procedures
Advance to maturity level 2

Planning
Training

Size, cost, schedule estimation procedures
Write SEPG charter

Improve Ada skills
Obtain sponsorship

Improve environment
Pilot project

Establish process database
Tool evaluation

Expand SEPG scope
Publish SEPG newsletter

Support MIS development
Establish infrastructure

 11
 7
 5
 3
 3
 2
 2
 2
 2
 2
 2
 2
 1
 1
 1
 1
 1

Figure G-11: Near-Term Tasks

The most popular task by far had to do with the development of software engineering
policies and procedures. Four of the eleven SEPGs that mentioned this task specifically
stated that they were preparing a manual or a handbook. Next most frequently noted was a
metrics program or procedure for gathering data. Five groups mentioned advancing to
process maturity level 2 as a "task."

144 CMU/SEI-90-TR-24

Results: Question 11

Process groups were asked about long-term tasks that they planned to address. Again,
advancing one or two maturity levels was mentioned by ten groups. Responses indicated
that three groups wished to advance to maturity level 2, six to maturity level 3, and one to
level 4 and eventually 5. The next most frequently mentioned long-term task was "con-
tinuous improvement of process." The others listed are in Figure G-12.

Tasks No. SEPGs

Improve maturity level
Put metrics tools and procedures in place

Continuous improvement of progress
Insert technology

Establish training program
Expand SEPG charter
Implement action plan

Expand scope of SEPG efforts
Perform assessments

Increase degree of reuse
Instill a software quality culture

Do long range planning for the SEPG
Consult

Coordinate feedback from ongoing projects
Sell strategic plan to management

8
6
5
5
4
3
2
2
1
1
1
1
1
1
1

Figure G-12: Long-Term Tasks

CMU/SEI-90-TR-24 145

Results: Question 13

Question 13 asked SEPG representatives to list key accomplishments to date. Standards,
training courses, and improved technical software development environment were men-
tioned most often. Figure G-13 lists all responses.

Accomplishment No. SEPGs

Developing and documenting standard
process

Training course(s)
Improving the technical environment (tools,

workstations, etc.)
Self-assessment/Re-assessment

Getting started, planning
Establish reviews or inspections

Obtain or improve sponsorship
Metrics teams or standards/process

Obtained funding
Pilot projects

Professional activities (papers, workshops)
Newsletter

Established infrastructure
Expanded SEPG charter

9
8

6
5
4
3
3
3
2
2
2
1
1
1

Figure G-13: Key Accomplishments to Date

The responses to Questions 9, 10, 11, and 13 were analyzed with respect to the age of the
process group answering. The analysis sought to determine whether particular activities
were more common to newer groups (8 months or less in age—11 SEPGs) or older groups
(more than 8 months old—9 SEPGs).

146 CMU/SEI-90-TR-24

Figure G-14 compares responses between newer and older process groups for some of the
more frequently mentioned activities.

Activity

Number of
newer*
SEPGs

mentioning

Number of
older SEPGs
mentioning

Self-assessment
Increase maturity level
Increase maturity level

Process definition and standards
Metrics
Metrics
Metrics

5
4
8
7
3
2
2

4
1
2
4
3
3
1

Question
Number

9
10
11
10
10
11
13

†

†
* Eight months old or less.

More than eight months old.

Figure G-14: Activities of Newer Versus Older SEPGs

CMU/SEI-90-TR-24 147

Index

Action plan 27, 29, 58, 114, 121, 125
Guidelines 125
Operational plans 31, 36, 112
Operational plans 125
Responsibility for 33
Role of working groups 32
Strategic plan 29, 33, 105, 125
Tactical plans 31, 36, 105
Tactical plans 125
With multiple assessments 36
Without assessment 36

Adoption, technology 17
Assessment, process 6, 13, 19, 36, 58,

101, 115
ASD Software Development

Capability/Capacity Review 6, 19
Collaboration in 26
Confidentiality in 25
Interviews 20
Phases 27
Pressman approach 6, 19
Principles 25
SEI approaches 6, 19, 20
Sponsorship 25

AT&T Bell Laboratories 3, 5
Audits, process 101
Augmentation groups 63

Benefits 15
Boundary spanners 67, 118

Capability Evaluation - SEI 6, 95
Capability/Capacity Review - ASD 6, 19
CASE 41
Causal analysis 46
Change advocate 111
Change agent 111, 112, 118
Change target 111
Consulting 13, 18, 63
Context analysis 114, 119
Continuous improvement 5, 8, 14, 51
Costs 14, 18

Database, process 13, 43
Accessibility 46
For defect prevention 46
Measures in 44
Purpose 45

Defect prevention 43, 46
Causal analysis 46
Kick-off meeting 46

Definition, process 7, 17, 37, 40, 97, 100
Characteristics of 40

Entry criteria 40
Exit criteria 40
Using CASE 41
Using ETVX 38

Deming 97
Department of Defense 5, 95
Description, process 7, 37, 39
DoD-STD-2167A 40

ETVX 38

Ford 5

Hewlett Packard 3, 5, 46

IBM 3, 5, 6
IEEE 38, 40, 119
Implementing change 5, 7, 109

Boundary spanners 67, 118
Change advocate 111
Change agent 111, 112, 118
Change target 111
Frames of reference 112, 115
Mechanisms for 57
Opinion leaders 112
Pilot projects 51
Plans 29, 125
Resistance 112
Sponsors 111, 115, 117
Stages of commitment 60
Technology advocates 118
Transition 110

Improvement 7, 109
Benefits 15
Continuous 51
Costs 14
Deming’s approach 97
Identifying areas for 19
In a matrix organization 72
Ineffective approaches 96
Juran’s approach 96
Parallel organization for 71
Pilot of activities 36
Plans 29, 125
Process 8, 13, 37
Process design 101
Process management approach 97
Responsibility for 102
Shewart cycle 5, 97
Software design 101
Strategies for 96
Teams 102

Improvement cycle 5, 13, 19, 29

148 CMU/SEI-90-TR-24

Information transfer 57, 109
Mapping technology 57
Mechanisms 57
Stages of commitment 57
Strategies 58

Inspections 39, 100

Juran 96

Kaizen 5
Kick-off meeting 46

Lessons learned 19, 47, 73

Malcolm Baldridge Award 6
Management 6, 8, 13, 17, 25, 36, 40, 46,

54, 97, 106, 111, 115
Mapping technology 116, 119
Matrix organization 72
Maturity level, process 4, 98, 114
Measurement 37, 43
Motorola 6

Operational plans 31, 36, 112, 125
Organization development 63

Parallel organization 71
Pilots 36, 51, 53, 60, 110, 116, 122

Choice of test site 52
Evaluation of 54
Preparing for 52
Training for 53

Placement of process group 71
Program office 72

Quality 5, 7, 8, 95
Control 101
Functions in process management 98
Process management approach 97
Responsibility for 5, 8, 73
Technology 95
TQM 5, 95

Quality assurance 9, 51, 97
Quality circle 102

Search conference 19, 32, 105
SEPG Workshop Data 133
Shewart cycle 5, 97
Software Capability Evaluation 6, 95
Software engineering process group 1, 5,

13, 31, 36, 40, 43, 47, 58, 61, 71, 102,
109, 110, 111, 112, 114, 119, 121,
133

As consultants 63
Budget for 14

Data from workshop 133
Leader 67
Membership 14, 67, 69
Membership qualifications 68
Ongoing nature of 51
Placement of 71
Reporting structure 71
Responsibilities 13
Size 13, 135

Source selection 6, 15, 19
Sponsors 25, 40, 111, 115, 117
Staff organizations 9
Standards 39, 51, 57

DoD 40, 115
IEEE 38, 40, 119

Statistical process control 43, 95
Steering committee 17, 31, 40, 43, 51, 58,

71, 111, 114
Strategic plan 29, 33, 105, 125
Strategic planning 19, 32, 105

Tactical plans 31, 36, 105, 125
Technical working groups 17, 18, 31, 32,

36, 40, 43, 51, 58, 61, 71, 113, 119,
122, 136

Membership 18
Technological change 7, 109
Technology

Acquisition of 17, 37
Definition of 3
Installation of 53
Maturity of 117
Pilot use 51

Technology transfer 113
TQM 5, 95
Training and education 13, 51, 53, 102,

109, 117, 121, 136
Sources of 122

Variance between expectation and practice
7

Westinghouse 4, 71
Steering committee 18

	Table of Contents
	List of Figures
	Preface
	Introduction
	1. The Process Group
	2. Assessments
	3. Action Plan
	4. Describing and Defining the Software Process
	5. The Process Database
	6. Beginning Continuous Improvement
	7. Mechanisms for Information Transfer and Implementing Change
	8. Process Consultation
	9. Process Group Membership
	9. Process Group Membership
	10. Placing the Process Group in the Organization
	Conclusion: A Final Word from the Authors
	Acknowledgements
	References
	Appendix A: Characterizing the Software Process: A Maturity Framework
	Appendix B: The Quality Movement and Software Engineering Process Improvement
	Appendix C: Candidate Action Planning Process: The Search Conference
	Appendix D: An Introduction to Technological Change
	Appendix E: Training and Education
	Appendix F: Action Plan Guidelines
	Appendix G: Summary and Analysis of SEPG Workshop Data
	Index

