
Program Comprehension Techniques
Improve Software Inspections: A Case Study

Stan Rifkin
Master Systems Inc.

2604B El Camino Real 244
Carlsbad, CA 92008

USA
sr@Master-Systems.com

Lionel Deimel
1408 Navahoe Dr.

Pittsburgh, PA 15228
USA

led@prodigy.net

ABSTRACT
Software inspections are widely regarded as a cost-
effective mechanism for removing defects in software,
though performing them does not always reduce the
number of customer-discovered defects. We present a
case study in which an attempt was made to reduce such
defects through inspection training that introduced pro-
gram comprehension ideas. The training was designed to
address the problem of understanding the artifact being
reviewed, as well as other perceived deficiencies of the
inspection process itself. Measures, both formal and
informal, suggest that explicit training in program
understanding may improve inspection effectiveness.

Keywords

Software inspections, formal technical reviews, peer
reviews, program comprehension

1. INTRODUCTION
The software technical review is a widely -recommended
mechanism for software defect removal. Such reviews go
by many names—inspections, Fagan-style inspections,
code reviews, peer reviews, formal reviews—and exhibit
significant variations among organizations [Fagan, Freed-
man, Gilb]. All such review methods rely on the self-
evident notion that software professionals are likely to
find defects in software if they actually look at the
products they produce. A software technical review is a
meeting—along with its preparation—in which a group of
software professionals (peers) does exactly that. Types of
reviews are distinguished from one another by the rules
governing how that examination takes place and how it
relates to the overall software development or
maintenance process. Impressive claims are made for the

efficacy of reviews [Humphrey 1989].

What follows is a case study in which developers were
given, along with traditional (and non-traditional)
instruction, explicit instruction in program comprehension
concepts and techniques. The case study suggests that
software engineers often have poor strategies for
understanding the artifacts they are called upon to review
and that providing training in comprehension skills can
improve their performance significantly.

A Training Opportunity
One of the authors (Rifkin) was engaged by a manufac-
turing firm that we will call Widget, Inc.1 Widget man-
agement, having read the literature on software inspec-
tions, had expected the introduction of this practice to
produce a significant decline in customer-discovered
defects. The anticipated decline had not occurred, how-
ever, either in the number or percentage of defects iden-
tified by customers.

Previous engagements had investigated the common
experience that, while the percentage of defects discov-
ered by testing prior to product release declines precipi-
tously after the introduction of inspections, customer-dis-
covered defects show no significant decrease. This is not
to say that inspections are not useful or cost-effective. In
large measure, however, they seem to identify defects that
might otherwise be found using a more expensive
method—testing—rather than reduce the overall number
of defects in released software.

We had hypothesized that introducing inspections often
had had little effect on reducing customer-identified
defects because, although reviewers were being thor-

1 The firm wishes to remain anonymous and does not
want to divulge raw data on defects, which it considers
proprietary. The data in this paper are presented in a
manner intended to respect those wishes.

oughly trained in the group aspects of the inspection pro-
cess, they were being given little guidance as to how to
precisely carry out their preparatory study of work prod-
ucts in the privacy of their own offices. It was generally
assumed that reviewers knew how to look for defects, any
data to the contrary notwithstanding. This hypothesis had
led to the development of a training program on those
previous engagements that was intended to be more
comprehensive, and this enhanced training was brought to
Widget. It incorporated an introduction to program
comprehension based on the Deimel and Naveda report
from the Software Engineering Institute, “Reading Com-
puter Programs: Instructor’s Guide and Exercises”
[Deimel 1990].

Widget, Inc.
Widget is a large-scale manufacturing company. One
particular section produces software for engineering
computations. There used to be two groups in this sec-
tion, which we will call Group 2 and Group 3. Each
group employed about 30-35 software professionals, all
of whom were trained in and regularly performed
inspections. Group 2 had been trained in performing
inspections by one of the pioneers in the field and Group
3 had received training from the other [Fagan, Gilb].
Group 2 had received training about five years prior to
our engagement, and Group 3 had received training about
three years prior. The two groups had developed a
number of large FORTRAN programs, and their current
duties predominantly involved maintaining and enhancing
those programs. Another unit, which we will call Group
1, was about 18 months old. It, too, comprised 30-35
professionals, nearly all of whom had worked previously
in one of the two other groups. Group 1 maintained and
enhanced a suite of computer-aided design and computer-
aided manufacturing programs written in FORTRAN, C,
and several script languages. The source code of some of
the programs had been purchased. Staff turnover in all
three groups was very low, less than 5% over five years.

The customers (users) of the software for which the sec-
tion was responsible were Widget engineers. Although
these engineers were organized into a number of separate
units, they constituted a substantially homogeneous cus-
tomer base for all three development groups. Each major
customer unit has one or two representatives responsible
for collecting issues (including bugs and desired features)
and negotiating their resolution with the developers.

Some Group 1 members had received inspections training
from each of the software inspections pioneers when they
had been members of Groups 2 and 3, respectively. This
difference in backgrounds and the perceived incom-
patibility of the pioneers’ methods had inhibited their use
of inspections. Group 1 management sought to routinize
inspections through training that fostered a common

understanding of inspections. After some discussion with
that management, however, reduction of customer-
discovered defects became the dominant goal of the pro-
posed engagement. It was necessary to define a single
inspection process for Group 1, of course; moreover the
members of Group 1 were already “sold” on inspections
and did not need specific encouragement to perform
them.

The Training Workshop
The normal Master Systems 1½ day inspections training
workshop was presented at Widget for the members of
Group 1, with half the group attending each of two
offerings. The workshop followed this syllabus:

Day 1 (full -day)

• DEFINITION OF INSPECTIONS, EXPECTED
BENEFITS: Description of the “common” software
inspection process and its documented benefits.

• INTRODUCTION TO THE INSPECTION PROCESS:
Details of the usual steps before, during, and after an
inspection defect collection meeting.

• INTRODUCTION TO READING COMPREHENSION:
Discussion of how we come to understand what we
read and how that process can be made more effective.

• DEVELOPMENT OF THE INSPECTION PROCESS:
What are the requirements for inspections? What is a
process that will fulfill those requirements? Two types
of work products are chosen to be inspected.

In Between (outside work done by participants)

• CONTINUED DEVELOPMENT OF THE INSPECTION
PROCESS: Participants, having each been assigned to
one of three groups, meet either to complete a full
description of the inspection process or to develop
checklists for each of the two work product types.

• SELECTION AND STUDY OF ARTIFACTS: The
groups responsible for composing checklists select
existing artifacts for practice inspections. Each work-
shop participant reviews one of these privately, in
preparation for the inspections on Day 2.

Day 2 (half day)

• PRACTICE INSPECTIONS: Inspections of the selected
artifacts allow participants to practice taking the four
rôles of producer, moderator, recorder, and reviewer
using the selected artifact.

• DEBRIEF: Discussion of what has been learned and
how it can be applied on the job.

Days 1 and 2 were a week apart. Approximately two
hours of the instruction time on Day 1 were devoted to
understanding programs. This material was to be applied
during the In Between time, when the artifacts selected
were studied privately by each participant for approxi-
mately two hours.

Much of the material on program comprehension was
taken from or suggested by the report by Deimel and
Naveda. (The report makes a case for the importance of
teaching program reading skills, reviews the relevant lit-
erature, discusses how program reading can be taught,
and illustrates teaching suggestions using a substantial
Ada program. It contains an extensive, annotated bibli-
ography.) The workshop introduced a simple model of
program comprehension, discussed comprehension goals
for reading, and gave participants both general and spe-
cific strategies for understanding programs. Instead of
using Deimel’s and Naveda’s case study, actual artifacts
from Widget were used to illustrate comprehension
issues, concerns, and principles.

An example of the material in the comprehension unit is a
brief discussion of how we come to understand what we
read. We assume there exists an independent reality, the
real world. We are interested in a small portion of that
reality that is our particular application area. We think of
the application as an abstraction of the real world. Our
job as systems developers is to translate the features of
that abstraction into the computer domain. There are thus
two translations to be dealt with, the first from the real
world into application terms, and the second from the
application domain into computer terms. We come to
understand these different domains (real world, applica-
tion, and computer) by constructing models of them, and
then we test those models by having a dialogue [Schön
1983] with them in light of what we seek to accomplish
(that is, compute). Reading and understanding a program
is a complex process of translating, interpreting, and
hypothesis testing among these (and possibly inter-
mediate) domains.

In addition to the introduction of program comprehension
material, there are three aspects of our form of inspection
instruction that are distinctive that differ from
“traditional” instruction, and may therefore have had
some influence on the effectiveness of instruction and the

conduct of inspections. First, we develop the process of
inspection during the course, from the requirements and
design elicited there. We do not arrive with a prepared
process.

Second, the participants develop their own checklists
based on ones available in the public domain that we
supply. The participants usually develop two sets of
checklists, one for each type of artifact they decide is
most important for them to inspect. Code and require-
ments are the typical choices. Again, we do not arrive
with the final, “best” checklists.

Third, the workshop participants select the artifacts to be
inspected, one artifact of each type. Our advice is to
select the oldest, most reliable artifacts that can be found.
That way, finding defects using the new inspections pro-
cess impresses even the most skeptical participants.

1. RESULTS
Case studies are, by their nature, not generalizable. If one
recalls Thorngate’s clock [Thorngate 1976], there is a
“G” for generalizable at 12 o’clock, an “S” for simple at 4
o’clock, and an “A” for accurate at 8 o’clock. Thorngate’s
dictum is that any one study is like a one-armed clock: it
cannot be simultaneously general, accurate, and simple.
Our study is accurate at the expense of the other two
factors.

Because the training of Group 1 grew, in part, out of dis-
satisfaction with the number of defects still found by
customers, it was natural to examine customer defect
reports for evidence of improvement. This was easily
done, as written defect reports were received daily and
were handled in the same, standard manner for all three
groups. Reported defects were classified as “critical,”
“serious,” or “other.” Critical defects were those that
either crashed the system or prevented the application
from proceeding. Serious defects resulted in the produc-
tion of wrong answers. All less severe defects were clas-
sified as “other.”2

Of course, the software engineers trained in our two
workshops took some time to begin applying the material
presented. Moreover, only after inspected materials were
released and in the field for a time did they begin to gen-
erate customer defect reports. From a detailed analysis of

2 Each of the groups also classified the type of error,
though each used a different scheme. Groups 2 and 3
created their own, different defect categories, and Group 1
was trained in orthogonal defect classification
[Chillarege]. The incompatibility of these defect
taxonomies precluded drawing meaningful inferences
about the differences in the types of defects detected.

defect reports, it was determined that reports applying to
software released by Group 1 made the transition from
being predominately about pre-workshop modules to
referring to post-workshop-inspected modules approxi-
mately eight weeks after the training was completed.
After this time, post-workshop-inspected modules con-
tinued to predominate in the defect report stream for
Group 1. About 40 days after this time, defect reports
were nearly exclusively about software inspected after the
training.

The transition between defect reports of pre- and post-
workshop work products was short because most cus-
tomer-discovered defects relate to fixes or enhancements
requested by the customers themselves. Newly delivered
code is checked immediately upon delivery by the cus-
tomers or their representatives, who want to make sure it
works correctly.

In order to establish a baseline to characterize error
reports before our training workshops could exert any
influence on behavior, we examined defect reports before
and after the last workshop, counting critical and serious
defects only. According to our analysis, there was no
change in the pattern of Group 1 defects until about 10
working days3 after the perceived inspection process
changeover point referred to above. Groups 2 and 3
showed essentially steady-state behavior during this entire
period, as one would expect. We therefore used the 10
days before the pattern of reported Group 1 defects began
to change as our baseline period. Reports of critical and
serious defects for which each of the three groups was
responsible were counted during this period, and the
average number of defects per day for each group was
computed. Rather than presenting numbers of defects, we
have expressed the data values as a percentage of the
baseline average for each group. This seemed a fair way
to measure pre-workshop (baseline) performance because
(1) the groups were performing comparable tasks, (2) the
groups had similar customer-identified defect rates, and
(3) all groups inspected some of their work products, but
not all.

The actual number of critical and serious defect reports
received daily for each of the three groups was plotted for

3 The data presented cover regular work days and
exclude weekends and holidays, on which customer
representatives do not normally work. Note that the
modules most heavily used at any given time depend on
the point in the product-development life cycle at which
customers are working We did not try to account for
effects that might have been attributable to changing
usage patterns, in part because, across the three groups,
there is considerable parallelism among the dozen or so
products undergoing user development.

110 days, beginning on the first day of the 10-day base-
line period. These data are shown in Figure 1. We could
have gone back much further than 10 days, but there
would have been no change in the patterns seen. Plots by
defect type (critical, serious, other) reveal the same pat-
tern as the plots shown.

As might be expected, the data for Groups 2 and 3 vary
around 100%, roughly between 0 and 2.5 times the aver-
age number of reports in the baseline period per day. The
Group 1 data, on the other hand, are distinctive, after the
first 10 days.

The customer-reported defects come directly from reports
submitted by customers. Figure 1 shows the (normalized
to 100%) number of defects recorded on such reports
each day. Although the data do include multiple reports
of the same defects, there are, in fact, few such duplica-
tions. The users are closely-knit and generally decide
together to submit defect reports. Group 3 disputed the
validity of several reports (that is, its members believed
that no defect was indicated), and these are not repre-
sented; on days on which all of the Group 3 defects were
disputed there is a zero count.4 Group 1, on the other
hand, decided, as a matter of policy, that any customer-
reported defect is a defect, ipso facto.

It would have been useful to have been able to collect and
compare defect densities, error injection rates, productiv-
ity, and other statistical measures of cross-group differ-
ences and similarities. No such measures were available,
at least in part because none of the groups use an auto-
mated configuration management system, which could
track easily the actual changes in code. Also, the lack of
software configuration management made it impractical
for us to ascertain the rate of errors introduced while
trying to fix bugs, which can be quite large. We observe,
though, that Groups 2 and 3 have been in existence longer
than Group 1 and therefore may be more “mature” in
some sense.

2. ANALYSIS
Figure 1 suggests dramatic improvement in the post-
workshop performance of Group 1. During the first 10
days, all three groups display the same up-and-down

4 A zero count occurs when the development group does
not agree that the user has found an error. In other words,
there were no errors found for that day, even though some
may have been reported.

0%

50%

100%

150%

200%

250%

300%

1 11 21 31 41 51 61 71 81 91 101

Work day number

D
ef

ec
ts

 a
s p

er
ce

nt
 o

f b
as

el
in

e

Group 1
Group 2
Group 3

Fig. 1. Number of post release critical and serious defect
reports of Groups 1-3 by day, expressed as percentage of

baseline average.

behavior of the number of defects attributable to their
work. (There is no reason to expect that the number of

reports should be constant from day-to-day.) In terms of
absolute numbers, Group 1 was in the middle of the pack,
as it had been for the previous 18 months. Then, after the
products that Group 1 produced and inspected using the
workshop methods begin to be released, there is a clear

decrease in the number of post-release defects,

0%

50%

100%

150%

200%

250%

300%

1 11 21 31 41 51 61 71 81 91 101

Work day number

D
ef

ec
ts

 a
s p

er
ce

nt
 o

f b
as

el
in

e

Fig. 2. Number of post release critcial and serious defect
reports by Group 1 by day, as expressed as percentage of

baseline.

those discovered by users. As can be seen from the scale
of Figure 1, the rate drops to about 10% of the baseline
average. In other words, there was a 90% reduction in

the number of post-release defects per day discovered by
users. Figures 2-5 show individual curves for the three

Groups. Figure 2 shows Group 1’s up-and-down
behavior during the first 10 days of this study, more

characteristic of Groups 2 and 3. Then there is a steady
drop in the number of defects reported by users. Figure 3

illustrates this decrease more clearly because of a

0%

10%

20%

30%

40%

50%

60%

11 21 31 41 51 61 71 81 91 101

Work day number

D
ef

ec
ts

 a
s p

er
ce

nt
 o

f b
as

el
in

e

Fig. 3. Number of post release critcial and serious defect
reports by Group 1 by day, beginning with Day 11, as

expressed as percentage of baseline.
(Note change of Y-axis compared with Fig. 2)

vertical scale change resulting from showing only the data
from the eleventh day onward. Figure 4 shows Group 2’s
post-release defect discovery history, and Figure 5, Group
3’s. Groups 2 and 3 serve as control groups here—they
were doing nothing differently—so there is no reason to
expect their defect rates to show changes. Group 3 has a
larger variance than Group 2, and also has many more
zero counts.

0%

50%

100%

150%

200%

250%

300%

1 11 21 31 41 51 61 71 81 91 101

Work day number

D
ef

ec
ts

 a
s p

er
ce

nt
 o

f b
as

el
in

e

Fig. 4. Number of post release critical and serious defect
reports of Group 2 by day, expressed as percentage of

baseline average.

0%

50%

100%

150%

200%

250%

300%

1 11 21 31 41 51 61 71 81 91 101

Work day number

D
ef

ec
ts

 a
s p

er
ce

nt
 o

f b
as

el
in

e

Fig. 5. Number of post release critical and serious defect
reports for Group 3, by day, expressed as percentage of

baseline average.

Using the data available, we investigated two questions:

1. How does the decrease in the number of defects dis-
covered post-release by users relate to the cost to repair
those defects? In other words, do users discover the
really difficult and expensive-to-fix defects, or do inspec-
tions catch them? We used effort, that is, time, to indicate
cost. Repair data came directly from the defect reports.
All groups report the time they spend repairing each
defect. Figure 6 shows our findings: there is a significant
reduction in the per-defect cost to repair user-discovered,
post-release defects from Group 1, but not from Groups 2
and 3. We infer from this that Group 1 is either identify-
ing expensive-to-repair defects before release or learning

to program better in the first place. No special pattern is
apparent in the data for Groups 2 and 3.

0%

50%

100%

150%

200%

250%

300%

1 11 21 31 41 51 61 71 81 91 101

Work day number

T
im

e
to

 r
ep

ai
r

as
 p

er
ce

nt
 o

f b
as

el
in

e

Groups 2 & 3
Group 1

Fig. 6. Repair time of defects by day, expressed as percentage of
baseline. Groups 2 & 3 = 100%.

2. Does some other activity account for the difference in
post-release defect discovery? We compared over time
the relative effectiveness of testing, inspections, and post-
release discovery in Figures 7-9. Times 1, 2, and 3 in
these figures represent times just before inspection
training, a few months after training, and a year or two
after training, respectively.

Fig. 7. Percentage of Group 1 defects detected by mechanism over time.

0%

50%

100%

1 2 3

Time period (see text)

%
-a

ge
 o

f a
ll

de
fe

ct
s d

et
ec

te
d

Test
Inspections
Post Release

It is generally agreed that there are two ways to identify
defects pre-release: reviews and testing. As noted at the
beginning of this paper, inspection is a form of software
review. The literature on the benefits of inspections com-
monly notes that the percentage of pre-release defects
caught by inspections (and without testing) evolves from
0% before implementing inspections, to 70-80% after
inspections are fully implemented; the remainder of pre-
release defects being identified through testing [Gilb].
That was also Widget’s experience, as seen from the fig-
ures. The authors are unaware of any literature about the
impact of inspections specifically on post-release defects.

Fig. 8. Percentage of Group 2 defects detected by mechanism over time.

0%

50%

100%

1 2 3

Time period (see text)

%
-a

ge
 o

f a
ll

de
fe

ct
s d

et
ec

te
d

Test
Inspections
Post Release

Figures 8 and 9 indicate that Groups 2 and 3 did not
experience a decrease in the percentage of defects discov-
ered post-release by users, but, according to Figure 7,
Group 1 did. In fact, according to the figures, the
decrease in Group 1’s post-release defect discovery was
due, in large part, to inspections.

Fig 9. Percentage of Group 3 defects detected by mechanism over time.

0%

50%

100%

1 2 3

Time period (see text)

%
-a

ge
 o

f a
ll

de
fe

ct
s d

et
ec

te
d

Test
Inspections
Post Release

3. IMPLICATIONS
Did Group 1 improve simply because we paid attention to
it—the so-called Hawthorne effect? We cannot say, but
we have reason to doubt it. Like Groups 2 and 3, Group
1 knew it was being trained. It did not know it was being
studied, however, as all the data collection and analysis
were done after the fact from routine paperwork. More-
over, the Hawthorne effect presumably wears off after a
time, and we saw no such effect. Some authors even
argue that there never was a Hawthorne effect, that it was
an artifact of the underlying Hawthorne site experiment
and analysis [Jones 1992].

The Widget experience suggests a number of inspections-
related lessons or, at the very least, some ideas to be fur-
ther explored. To begin with, it suggests that we should
not be complacent about having discovered the ultimate
form of group software review. Some writings, on
inspections particularly, suggest fixed necessary and suf-
ficient conditions required for effective reviews [Fagan].
Yet the nature of the defect classification used and the
degree to which reviewers “own” their own process—
other distinctive features of the training given members of
Group 1—may play a significant role in making reviews
useful. The primary lesson to be learned about inspec-

tions, however, is that, in the past, we may have paid too
much attention to the global software review process and
too little attention to the conduct of an individual and per-
haps weighty process, namely the actual review of the
software product.

What became obvious from the Widget experience was
that individual software professionals have widely dif-
fering, sometimes poorly conceived, comprehension
strategies. We often heard orally in follow-up sessions
from workshop participants that, for the first time ever,
they were able to say with some certainty that they did or
did not understand what they were reviewing.

Comprehension skills can be improved with training.
(Ideally, comprehension skills should be taught much
earlier in their careers of software professionals [Deimel
1985].) Better comprehension skills among reviewers
will likely facilitate development of a shared vision of
what software products should look like in order to be
understood, a vision that should feed back into the soft-
ware process planning in a more effective way than
merely following checklists. In fact, one author (Rifkin)
uses this realization by clients as a milestone to assure
that they understand the critical importance of compre-
hension: you cannot inspect what you cannot understand.
Thus arises a new entry criterion for inspections:
inspectability—can I comprehend what you have given
me to review?

The apparent effectiveness of the inspection workshop is
remarkable in light of the relatively superficial treatment
given to program comprehension ideas. We theorize,
however, that the material presented gave attendees a new
way to think about programs and about what it means to
examine them. This re-orientation may have been suffi-
ciently powerful in its own right that the lack of
supporting details was not a serious impediment to the
development of improved program comprehension skills.
Along with the introduction to program comprehension,
we make the point repeatedly during training that this is
just the beginning of a lifelong process of learning of how
to understand what you read. The extensive bibliography
of Deimel and Naveda [1990] suggests as much.

There could be many reasons for increased defect identi-
fication, as we have stated elsewhere and summarize here,
as they are threats to our conclusions:
1. In some important ways Group 1 is different than

Groups 2 and 3.
2. The choice of an inspections process was determina-

tive.
3. The timing was ideal in that Group 1 was frustrated

with comprehension and the training answered an
immediate concern.

4. The development of custom, tailored checklists was
determinative.

Again, because this is a case study and not controlled in
any way, we cannot directly address these alternative
hypotheses. Aside from the quantitative results presented,
we worked with the Group 1 members and learned about
the differences through unstructured dialog. That dialog
supported the effect of comprehension training and did
not identify any of the factors above.

This study points to the importance of comprehension
research in stark financial terms, as the comprehension
training seems to have led to the identification of signifi-
cant software defects not caught using a more simple-
minded approach to software inspection. This research
should continue, and the effect of program com-
prehension training on the identification of software
defects should be examined in greater detail. It would be
interesting, for example, to see the effect of providing
only comprehension training to a group already per-
forming inspections. (What would happen if Group 2 or
3 were given a 2-3 hour comprehension workshop?)

If indeed comprehension training improves performance
during inspections, another interesting question is what
material is most effective to present and what material can
be used later to insure continuously improving inspection
results.

Acknowledgments

A very early draft was presented at the 19th Annual
NASA Software Engineering Workshop in Greenbelt,
Maryland, 1994. We are indebted to our colleagues for
their comments and feedback: Bill Brykczynski, Marilyn
Bush, Bob Grady, Phillip Johnson, Frank McGarry, K.
David Neal, Ron Radice, and Ed Weller.

References
[Chillarege
1992]

R. Chillarege, R., et al., “Orthogonal
Defect Classification-A Concept for
In-process Measurements,” IEEE
Trans. Softw. Eng. 18, 11, (Novem-
ber 1992) 943-956.

[Deimel 1985] Deimel, L. E. “The Uses of Program
Reading,” ACM SIGCSE Bulletin 17,
2 (June 1985) 5-14.

[Deimel 1990] Deimel, L. E., and J. F. Naveda.
Reading Computer Programs: In-
structor’s Guide and Exercises.
Educational Materials CMU/SEI-90-
EM-3, Software Engineering Insti-
tute, Carnegie Mellon University,
Pittsburgh, Pa., 1990. Available
electronically from the SEI via
anonymous ftp from ftp.sei.cmu.edu
as files em-3.ps and em-3code.txt in
/pub/education.

[Fagan 1976,
1986, 1994]

Fagan, M. E. “Design and Code
Inspections to Reduce Errors in Pro-
gram Development.” IBM Systems J.
15, 3 (1976), 182-211;. Also Fagan,
M. E,. “Advances in Software In-
spections.” IEEE Software SE-12, 7
(July 1986) 744-751;. Also Strauss,
S., and R. Ebenau. Software
Inspection Process,. New York:
McGraw-Hill, 1994.

[Freedman
1982]

Freedman, D. P., and G. M. Wein-
berg. Handbook of Walkthroughs,
Inspections, and Technical Reviews,
3rd Ed. New York: Little, Brown,
1982.

[Gilb 1988,
1993]

Gilb, T. Principles of Software En-
gineering Management. Woking-
ham, England: Addison-Wesley,
1988, Chapter 12;. Also Gilb, T.,
and Graham, D. Software Inspection.
Reading, Mass.: Addison-Wesley,
1993.

[Humphrey
1989]

Humphrey, W. S. Managing the
Software Process. Reading, Mass:
Addison-Wesley, 1989, Section
15.4.3ff.

[Jones 1992] Jones, S. R. G., “Was There a
Hawthorne Effect?” American J.
Sociology 98, 3 (November 1992)
451-468.

[Schön 1983] Schön, D. A., The Reflective Practi-
tioner: How Professionals Think in
Action. New York: Basic Books,
1983.

[Thorngate
1976]

Thorngate, Warren., “’In general’ vs.
‘it depends’: some comments of the
Gergen-Schlenker debate,” Person-
ality & Social Psychology Bulletin, 2
(1976) 404-410.

